Mingzhe Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10641125/publications.pdf

Version: 2024-02-01

15	1,773	17 h-index	17
papers	citations		g-index
17	17	17	3102
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Integrating a redox-coupled dye-sensitized photoelectrode into a lithium–oxygen battery for photoassisted charging. Nature Communications, 2014, 5, 5111.	5.8	236
2	Potassium-Ion Oxygen Battery Based on a High Capacity Antimony Anode. ACS Applied Materials & Interfaces, 2015, 7, 26158-26166.	4.0	227
3	Dimeric [Mo ₂ S ₁₂] ^{2â^'} Cluster: A Molecular Analogue of MoS ₂ Edges for Superior Hydrogenâ€Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2015, 54, 15181-15185.	7.2	160
4	p-Type Dye-Sensitized Solar Cells Based on Delafossite CuGaO ₂ Nanoplates with Saturation Photovoltages Exceeding 460 mV. Journal of Physical Chemistry Letters, 2012, 3, 1074-1078.	2.1	154
5	Aqueous Lithium–Iodine Solar Flow Battery for the Simultaneous Conversion and Storage of Solar Energy. Journal of the American Chemical Society, 2015, 137, 8332-8335.	6.6	149
6	Understanding Side Reactions in K–O ₂ Batteries for Improved Cycle Life. ACS Applied Materials & Discrete Life. ACS Applie	4.0	117
7	Cu(i)-based delafossite compounds as photocathodes in p-type dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2014, 16, 5026.	1.3	116
8	Solar-powered electrochemical energy storage: an alternative to solar fuels. Journal of Materials Chemistry A, 2016, 4, 2766-2782.	5.2	109
9	Probing the Low Fill Factor of NiO p-Type Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 26239-26246.	1.5	94
10	Investigating dendrites and side reactions in sodium–oxygen batteries for improved cycle lives. Chemical Communications, 2015, 51, 7665-7668.	2.2	93
11	Scalable synthesis of delafossite CuAlO2 nanoparticles for p-type dye-sensitized solar cells applications. Journal of Alloys and Compounds, 2014, 591, 275-279.	2.8	74
12	Understanding the Crystallization Mechanism of Delafossite CuGaO ₂ for Controlled Hydrothermal Synthesis of Nanoparticles and Nanoplates. Inorganic Chemistry, 2014, 53, 5845-5851.	1.9	70
13	pH-Tuning a Solar Redox Flow Battery for Integrated Energy Conversion and Storage. ACS Energy Letters, 2016, 1, 578-582.	8.8	55
14	Dyeâ€Controlled Interfacial Electron Transfer for Highâ€Current Indium Tin Oxide Photocathodes. Angewandte Chemie - International Edition, 2015, 54, 6857-6861.	7.2	35
15	2H-CuScO ₂ Prepared by Low-Temperature Hydrothermal Methods and Post-Annealing Effects on Optical and Photoelectrochemical Properties. Inorganic Chemistry, 2015, 54, 5519-5526.	1.9	27