
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10641038/publications.pdf Version: 2024-02-01

DAE SOO JUNC

#	Article	IF	CITATIONS
1	One-pot spray pyrolysis for core–shell structured Sn@SiOC anode nanocomposites that yield stable cycling in lithium-ion batteries. Applied Surface Science, 2022, 589, 152952.	6.1	7
2	A Novel Highâ€Performance TiO _{2â€x} /TiO _{1â€y} N _y Coating Material for Silicon Anode in Lithiumâ€Ion Batteries. Small Methods, 2022, 6, .	8.6	9
3	Ultrasonic spray pyrolysis for air-stable copper particles and their conductive films. Acta Materialia, 2021, 206, 116569.	7.9	16
4	Towards an efficient anode material for Li-ion batteries: understanding the conversion mechanism of nickel hydroxy chloride with Li- ions. Journal of Materials Chemistry A, 2020, 8, 1939-1946.	10.3	34
5	Three-dimensional porous pitch-derived carbon coated Si nanoparticles-CNT composite microsphere with superior electrochemical performance for lithium ion batteries. Journal of Alloys and Compounds, 2020, 821, 153224.	5.5	38
6	Unique structured microspheres with multishells comprising graphitic carbon-coated Fe ₃ O ₄ hollow nanopowders as anode materials for high-performance Li-ion batteries. Journal of Materials Chemistry A, 2019, 7, 15766-15773.	10.3	61
7	Pitch-derived yolk-shell-structured carbon microspheres as efficient sulfur host materials and their application as cathode material for Li–S batteries. Chemical Engineering Journal, 2019, 373, 382-392.	12.7	41
8	Synthesis of Li-Rich Cathode Material with High C-Rate Performance by Reductive Treatment. Journal of Electronic Materials, 2017, 46, 1855-1861.	2.2	5
9	Delicate Structural Control of Si–SiO _{<i>x</i>} –C Composite via High-Speed Spray Pyrolysis for Li-Ion Battery Anodes. Nano Letters, 2017, 17, 1870-1876.	9.1	156
10	Clinical predictors for favorable outcomes from endovascular recanalization in wake-up stroke. Journal of Clinical Neuroscience, 2017, 41, 66-70.	1.5	11
11	A Half Millimeter Thick Coplanar Flexible Battery with Wireless Recharging Capability. Nano Letters, 2015, 15, 2350-2357.	9.1	78
12	The crystal structure and electrochemical performance of Li1.167Mn0.548Ni0.18Co0.105O2 composite cathodes doped and co-doped with Mg and F. Journal of Electroanalytical Chemistry, 2015, 740, 88-94.	3.8	26
13	Functional outcome after recanalization for acute pure M1 occlusion of the middle cerebral artery as assessed by collateral CTA flow. Clinical Neurology and Neurosurgery, 2015, 131, 72-76.	1.4	17
14	Superior Lithiumâ€Ion Storage Properties of Siâ€Based Composite Powders with Unique Si@Carbon@Void@Graphene Configuration. Chemistry - A European Journal, 2015, 21, 2076-2082.	3.3	23
15	Rate capability for Na-doped Li1.167Ni0.18Mn0.548Co0.105O2 cathode material and characterization of Li-ion diffusion using galvanostatic intermittent titration technique. Journal of Alloys and Compounds, 2015, 623, 55-61.	5.5	50
16	Scalable Fracture-free SiOC Glass Coating for Robust Silicon Nanoparticle Anodes in Lithium Secondary Batteries. Nano Letters, 2014, 14, 7120-7125.	9.1	94
17	Recent progress in electrode materials produced by spray pyrolysis for next-generation lithium ion batteries. Advanced Powder Technology, 2014, 25, 18-31.	4.1	80
18	Hierarchical Porous Carbon by Ultrasonic Spray Pyrolysis Yields Stable Cycling in Lithium–Sulfur Battery. Nano Letters, 2014, 14, 4418-4425.	9.1	234

#	Article	IF	CITATIONS
19	Emergent intracranial stenting for acute M2 occlusion of middle cerebral artery. Clinical Neurology and Neurosurgery, 2014, 119, 110-115.	1.4	10
20	One-Dimensional Carbon–Sulfur Composite Fibers for Na–S Rechargeable Batteries Operating at Room Temperature. Nano Letters, 2013, 13, 4532-4538.	9.1	387
21	One-step synthesis of copper nanoparticles embedded in carbon composites. Materials Research Bulletin, 2013, 48, 1484-1489.	5.2	18
22	Spray Drying Method for Large-Scale and High-Performance Silicon Negative Electrodes in Li-Ion Batteries. Nano Letters, 2013, 13, 2092-2097.	9.1	237
23	Recycling rice husks for high-capacity lithium battery anodes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12229-12234.	7.1	256
24	Encapsulated Monoclinic Sulfur for Stable Cycling of Li–S Rechargeable Batteries. Advanced Materials, 2013, 25, 6547-6553.	21.0	330
25	Sintering characteristics of nano-sized Ag–Pd–glass composite powders with high Pd content. Journal of Materials Science, 2012, 47, 7090-7098.	3.7	1
26	Solution Processed Aluminum Paper for Flexible Electronics. Langmuir, 2012, 28, 13127-13135.	3.5	61
27	Characteristics of ZnO–B2O3–SiO2–CaO glass frits prepared by spray pyrolysis as inorganic binder for Cu electrode. Journal of Alloys and Compounds, 2011, 509, 8077-8081.	5.5	11
28	Characteristics of nano-sized Ag-Pd (70-30)-glass composite powders prepared by flame spray pyrolysis. Journal of the Ceramic Society of Japan, 2011, 119, 23-28.	1.1	1
29	Properties of La0.8Sr0.2Ga0.8Mg0.2O2.8 electrolyte formed from the nano-sized powders prepared by spray pyrolysis. Journal of the Ceramic Society of Japan, 2011, 119, 752-756.	1.1	0
30	Low-temperature sintering characteristics of nano-sized BaNd2Ti5O14 and Bi2O3–B2O3–ZnO–SiO2 glass powders prepared by gas-phase reactions. Materials Research Bulletin, 2011, 46, 2112-2116.	5.2	3
31	Characteristics of nanosized Bi-based glass powders prepared by flame spray pyrolysis as transparent dielectric layer material. Ceramics International, 2011, 37, 687-690.	4.8	2
32	A Novel Solution‧tamping Process for Preparation of a Highly Conductive Aluminum Thin Film. Advanced Materials, 2011, 23, 5524-5528.	21.0	53
33	Preparation of silver-glass composite powder and conducting film. Journal of the Ceramic Society of Japan, 2010, 118, 353-356.	1.1	2
34	Effect of preparation conditions on the properties of silver-glass composite powders prepared by spray pyrolysis. Journal of the Ceramic Society of Japan, 2010, 118, 25-29.	1.1	2
35	Characteristics of BaNd2Ti5O14 powders directly prepared by high-temperature spray pyrolysis. Ceramics International, 2010, 36, 63-68.	4.8	2
36	Characteristics of samaria-doped ceria nanoparticles prepared by spray pyrolysis. Ceramics International, 2010, 36, 465-471.	4.8	15

#	Article	IF	CITATIONS
37	Design of particles by spray pyrolysis and recent progress in its application. Korean Journal of Chemical Engineering, 2010, 27, 1621-1645.	2.7	137
38	Conductive silver films formed from nano-sized silver powders prepared by flame spray pyrolysis. Materials Chemistry and Physics, 2010, 124, 959-963.	4.0	10
39	Size-controlled Bi-based glass powders prepared by spray pyrolysis as inorganic additives for silver electrode. Ceramics International, 2010, 36, 1171-1176.	4.8	4
40	Composite conducting powders with core–shell structure as the new concept of electrode material. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 360, 69-73.	4.7	2
41	Characteristics of the glass powders with low Pb content directly prepared by spray pyrolysis. Journal of Alloys and Compounds, 2010, 502, 158-162.	5.5	2
42	The Role of Carbon Black in the Preparation of GdPO ₄ :Tb Phosphor Powders by Spray Pyrolysis. Japanese Journal of Applied Physics, 2009, 48, 116503.	1.5	2
43	The effects of glass powders prepared by spray pyrolysis on the structures and conductivities of silver electrode. Materials Chemistry and Physics, 2009, 118, 25-31.	4.0	6
44	Nanosized barium ferrite powders prepared by spray pyrolysis from citric acid solution. Ceramics International, 2009, 35, 1933-1937.	4.8	19
45	Size control of Pb-based glass powders between 38 and 84 nm in the flame spray pyrolysis. Journal of Electroceramics, 2009, 23, 236-241.	2.0	2
46	Spherical shape Ba-based glass powders prepared by spray pyrolysis for MLCCs. Journal of Electroceramics, 2009, 23, 437-441.	2.0	3
47	Nano-sized \hat{I}_{\pm} and \hat{I}_{-} TCP powders prepared by high temperature flame spray pyrolysis. Materials Science and Engineering C, 2009, 29, 1288-1292.	7.3	19
48	Effects of BaF2 flux on the properties of yellow-light-emitting terbium aluminum garnet phosphor powders prepared by spray pyrolysis. Optical Materials, 2009, 31, 870-875.	3.6	27
49	Effects of precursor types of Fe and Ni components on the properties of NiFe2O4 powders prepared by spray pyrolysis. Journal of Magnetism and Magnetic Materials, 2009, 321, 619-623.	2.3	35
50	Sintering behavior of La2O3–B2O3–TiO2 glass powders prepared by spray pyrolysis for low temperature co-fired ceramics. Ceramics International, 2009, 35, 1829-1835.	4.8	5
51	Fine-sized BaMgAl10O17:Eu2+ phosphor powders prepared by spray pyrolysis from the spray solution with BaF2 flux. Ceramics International, 2009, 35, 2651-2657.	4.8	10
52	Fine-sized Y3Al5O12:Ce phosphor powders prepared by spray pyrolysis from the spray solution with barium fluoride flux. Journal of Alloys and Compounds, 2009, 477, 776-779.	5.5	63
53	Firing characteristics of La0.8Sr0.2Ga0.8Mg0.2O3â~î´ electrolyte powders prepared by spray pyrolysis. Journal of Alloys and Compounds, 2009, 487, 693-697.	5.5	11
54	Characteristics of size controlled hydroxyapatite powders with nanometer size prepared by flame spray pyrolysis. Journal of the Ceramic Society of Japan, 2009, 117, 1060-1064.	1.1	3

#	Article	IF	CITATIONS
55	Synthesis and characterization of NiFe2O4 nanopowders via spray pyrolysis. Journal of the Ceramic Society of Japan, 2009, 117, 1069-1073.	1.1	4
56	Properties of Li2O-ZnO-Al2O3-SiO2 glass-ceramic system prepared by spray pyrolysis. Journal of the Ceramic Society of Japan, 2009, 117, 407-410.	1.1	0
57	Effect of glass powders with spherical shape and fine size on the sintering behavior and dielectric properties of BaTiO3 ceramics. Journal of the Ceramic Society of Japan, 2009, 117, 675-679.	1.1	2
58	Properties of Li2O-ZnO-Al2O3-SiO2 glass-ceramic system prepared by spray pyrolysis. Journal of the Ceramic Society of Japan, 2009, 117, 717.	1.1	0
59	Gd2O3:Eu phosphor powders prepared using a size-controllable droplet generator. Optical Materials, 2008, 30, 1810-1815.	3.6	3
60	Effects of solvent on the properties of nano-sized glass powders prepared by flame spray pyrolysis. Journal of the Ceramic Society of Japan, 2008, 116, 334-340.	1.1	5
61	GdPO4:Tb phosphor particles prepared by spray pyrolysis from the polymeric spray solution. Journal of the Ceramic Society of Japan, 2008, 116, 653-656.	1.1	0
62	Microstructure and electrical properties of nano-sized Ce1-xGdxO2 (0 .LEQ. x .LEQ. 0.2) particles prepared by spray pyrolysis. Journal of the Ceramic Society of Japan, 2008, 116, 969-974.	1.1	6
63	Spherical shape BaNd2Ti5O14 powders prepared by spray pyrolysis. Journal of the Ceramic Society of Japan, 2008, 116, 1289-1294.	1.1	0
64	Nano-sized LaMnO3 powders prepared by spray pyrolysis from spray solution containing citric acid. Journal of the Ceramic Society of Japan, 2008, 116, 141-145.	1.1	9
65	Characteristics of nano-sized pb-based glass powders by high temperature spray pyrolysis method. Journal of the Ceramic Society of Japan, 2008, 116, 600-604.	1.1	12
66	Spherical Shape PbO-B2O3-SiO2 Glass Powders Prepared by Flame Spray Pyrolysis. Journal of the Ceramic Society of Japan, 2007, 115, 483-486.	1.1	1
67	Formation of BaMgAl10O17:Eu Phosphor Particles with Spherical Shape and Filled Morphology in the Flame Spray Pyrolysis. Journal of the Ceramic Society of Japan, 2007, 115, 530-535.	1.1	4
68	Preparation of Bi2O3–B2O3–ZnO–BaO–SiO2 glass powders with spherical shape by spray pyrolysis. Journal of Alloys and Compounds, 2007, 437, 215-219.	5.5	32
69	Gd2O3:Eu phosphor particles prepared from spray solution containing boric acid flux and polymeric precursor by spray pyrolysis. Optical Materials, 2006, 28, 530-535.	3.6	24
70	Effect of preparation temperature on the formation of Sr2CeO4 phosphor particles in the spray pyrolysis. Korean Journal of Chemical Engineering, 2006, 23, 496-498.	2.7	1
71	Direct Synthesis of High-Brightness (CeTb)MgAl11O19Phosphor Particles by Spray Pyrolysis with Boric Acid Flux. Japanese Journal of Applied Physics, 2006, 45, 116-120.	1.5	5
72	Effect of Boric Acid Flux and Drying Control Chemical Additive on the Characteristics of Y2O3:Eu Phosphor Particles Prepared by Spray Pyrolysis. Japanese Journal of Applied Physics, 2006, 45, 9083-9087.	1.5	9

DAE SOO JUNG

#	Article	IF	CITATIONS
73	(CeTb)MgAl11O19Phosphor Particles Prepared by Spray Pyrolysis from Spray Solution Containing Citric Acid and Ethylene Glycol. Japanese Journal of Applied Physics, 2005, 44, 4975-4978.	1.5	10
74	Effect of boric acid flux on the characteristics of (CeTb)MgAl11O19 phosphor particles prepared by spray pyrolysis. Journal of Alloys and Compounds, 2005, 398, 309-314.	5.5	25
75	Corneal Endothelial Changes as a Clinical Diagnostic Indicator of Dentatorubropallidoluysian Atrophy. Cornea, 2004, 23, 210-214.	1.7	7
76	A Korean Family with Arg1448Cys Mutation of SCN4A Channel Causing Paramyotonia Congenita: Electrophysiologic, Histopathologic, and Molecular Genetic Studies. Journal of Korean Medical Science, 2002, 17, 856.	2.5	8