Yulei Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1063932/publications.pdf Version: 2024-02-01

YULEL CHANC

#	Article	IF	CITATIONS
1	An active-passive strategy for enhanced synergistic photothermal-ferroptosis therapy in the NIR-I/II biowindows. Biomaterials Science, 2022, 10, 1104-1112.	2.6	2
2	A mitochondria-tracing fluorescent probe for real-time detection of mitochondrial dynamics and hypochlorous acid in live cells. Dyes and Pigments, 2022, 201, 110227.	2.0	7
3	Manipulating the Injected Energy Flux via Host-Sensitized Nanostructure for Improving Multiphoton Upconversion Luminescence of Tm ³⁺ . Nano Letters, 2022, 22, 5339-5347.	4.5	11
4	Modulation of the Tumor Immune Microenvironment by Bi ₂ Te ₃ â€Au/Pdâ€Based Theranostic Nanocatalysts Enables Efficient Cancer Therapy. Advanced Healthcare Materials, 2022, 11, .	3.9	12
5	Efficient and Stable Blue Perovskite Light-Emitting Devices Based on Inorganic Cs ₄ PbBr ₆ Spaced Low-Dimensional CsPbBr ₃ through Synergistic Control of Amino Alcohols and Polymer Additives. ACS Applied Materials & amp; Interfaces, 2021, 13, 33199-33208	4.0	12
6	Er ³⁺ self-sensitized nanoprobes with enhanced 1525 nm downshifting emission for NIR-IIb <i>in vivo</i> bio-imaging. Journal of Materials Chemistry B, 2021, 9, 2899-2908.	2.9	32
7	Ultra-Sensitive Water Detection Based on NaErF4@NaYF4 High-Level-Doping Upconversion Nanoparticles. Applied Surface Science, 2021, 575, 151701.	3.1	7
8	Hybrid Nanoplatform: Enabling a Precise Antitumor Strategy via Dual-Modal Imaging-Guided Photodynamic/Chemo-/Immunosynergistic Therapy. ACS Nano, 2021, 15, 20643-20655.	7.3	27
9	Polyphotosensitizer nanogels for GSH-responsive histone deacetylase inhibitors delivery and enhanced cancer photodynamic therapy. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110753.	2.5	19
10	Optical imaging and pH-awakening therapy of deep tissue cancer based on specific upconversion nanophotosensitizers. Biomaterials, 2020, 230, 119637.	5.7	29
11	Mitochondria-Immobilized Unimolecular Fluorescent Probe for Multiplexing Imaging of Living Cancer Cells. Analytical Chemistry, 2020, 92, 11103-11110.	3.2	23
12	Switching off the SERS signal for highly sensitive and homogeneous detection of glucose by attenuating the electric field of the tips. Applied Surface Science, 2019, 493, 423-430.	3.1	13
13	Near-infrared light-mediated and nitric oxide-supplied nanospheres for enhanced synergistic thermo-chemotherapy. Journal of Materials Chemistry B, 2019, 7, 548-555.	2.9	11
14	Regulating the color output and simultaneously enhancing the intensity of upconversion nanoparticles <i>via</i> a dye sensitization strategy. Journal of Materials Chemistry C, 2019, 7, 8607-8615.	2.7	23
15	Assembly of upconversion nanophotosensitizer in vivo to achieve scatheless real-time imaging and selective photodynamic therapy. Biomaterials, 2019, 201, 33-41.	5.7	53
16	Near Infrared Light Sensitive Ultraviolet–Blue Nanophotoswitch for Imaging-Guided "Off–On― Therapy. ACS Nano, 2018, 12, 3217-3225.	7.3	113
17	An 800 nm driven NaErF ₄ @NaLuF ₄ upconversion platform for multimodality imaging and photodynamic therapy. Nanoscale, 2018, 10, 12356-12363.	2.8	62
18	Precisely Tailoring Upconversion Dynamics via Energy Migration in Core–Shell Nanostructures. Angewandte Chemie, 2018, 130, 3108-3112.	1.6	24

Yulei Chang

#	Article	IF	CITATIONS
19	Precisely Tailoring Upconversion Dynamics via Energy Migration in Core–Shell Nanostructures. Angewandte Chemie - International Edition, 2018, 57, 3054-3058.	7.2	97
20	Titelbild: Precisely Tailoring Upconversion Dynamics via Energy Migration in Core–Shell Nanostructures (Angew. Chem. 12/2018). Angewandte Chemie, 2018, 130, 3031-3031.	1.6	0
21	Ultrastrong Absorption Meets Ultraweak Absorption: Unraveling the Energy-Dissipative Routes for Dye-Sensitized Upconversion Luminescence. Journal of Physical Chemistry Letters, 2018, 9, 4625-4631.	2.1	48
22	Employing shells to eliminate concentration quenching in photonic upconversion nanostructure. Nanoscale, 2017, 9, 7941-7946.	2.8	140
23	Precise Photodynamic Therapy of Cancer via Subcellular Dynamic Tracing of Dual-loaded Upconversion Nanophotosensitizers. Scientific Reports, 2017, 7, 45633.	1.6	26
24	A SERS nano-tag-based fiber-optic strategy for in situ immunoassay in unprocessed whole blood. Biosensors and Bioelectronics, 2017, 92, 517-522.	5.3	38
25	Bcl-2 inhibitor uploaded upconversion nanophotosensitizers to overcome the photodynamic therapy resistance of cancer through adjuvant intervention strategy. Biomaterials, 2017, 144, 73-83.	5.7	38
26	Dependence between cytotoxicity and dynamic subcellular localization of up-conversion nanoparticles with different surface charges. RSC Advances, 2017, 7, 33502-33509.	1.7	18
27	Amphiphilic copolymer and TPGS mixed magnetic hybrid micelles for stepwise targeted co-delivery of DOX/TPP–DOX and image-guided chemotherapy with enhanced antitumor activity in liver cancer. RSC Advances, 2017, 7, 25694-25701.	1.7	8
28	One-step in situ solid-substrate-based whole blood immunoassay based on FRET between upconversion and gold nanoparticles. Biosensors and Bioelectronics, 2017, 92, 335-341.	5.3	31
29	Catalysis-reduction strategy for sensing inorganic and organic mercury based on gold nanoparticles. Biosensors and Bioelectronics, 2017, 92, 328-334.	5.3	27
30	Accurate Quantitative Sensing of Intracellular pH based on Self-ratiometric Upconversion Luminescent Nanoprobe. Scientific Reports, 2016, 6, 38617.	1.6	46
31	Correction: In vivo 808 nm image-guided photodynamic therapy based on an upconversion theranostic nanoplatform. Nanoscale, 2016, 8, 15358-15358.	2.8	1
32	A facile and general route to synthesize silica-coated SERS tags with the enhanced signal intensity. Scientific Reports, 2015, 5, 14934.	1.6	21
33	ABT737 enhances cholangiocarcinoma sensitivity to cisplatin through regulation of mitochondrial dynamics. Experimental Cell Research, 2015, 335, 68-81.	1.2	31
34	Near infrared light-driven water oxidation in a molecule-based artificial photosynthetic device using an upconversion nano-photosensitizer. Chemical Communications, 2015, 51, 13008-13011.	2.2	7
35	Towards high quality triangular silver nanoprisms: improved synthesis, six-tip based hot spots and ultra-high local surface plasmon resonance sensitivity. Nanoscale, 2015, 7, 8048-8057.	2.8	79
36	A highly effective in vivo photothermal nanoplatform with dual imaging-guided therapy of cancer based on the charge reversal complex of dye and iron oxide. Journal of Materials Chemistry B, 2015, 3, 8321-8327.	2.9	12

YULEI CHANG

#	Article	IF	CITATIONS
37	In vivo 808 nm image-guided photodynamic therapy based on an upconversion theranostic nanoplatform. Nanoscale, 2015, 7, 14914-14923.	2.8	53
38	Investigation on ligand exchange kinetics at CdSe/ZnS quantum dot surface utilizing pyrene as flourescent probe. Chemical Research in Chinese Universities, 2015, 31, 514-518.	1.3	1
39	808 nm driven Nd ³⁺ -sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging. Nanoscale, 2015, 7, 190-197.	2.8	161
40	An upconversion nanoparticle – Zinc phthalocyanine based nanophotosensitizer for photodynamic therapy. Biomaterials, 2014, 35, 4146-4156.	5.7	198
41	Effect of Aggregation of Ag Nanoparticles Suspended in Aqueous Solution on Surface Enhanced Raman Scattering. Chinese Journal of Luminescence, 2014, 35, 263-267.	0.2	0
42	Dendrimer functionalized water soluble magnetic iron oxide conjugates as dual imaging probe for tumor targeting and drug delivery. Polymer Chemistry, 2013, 4, 789-794.	1.9	33
43	Optimizing conditions for encapsulation of QDs by varying PEG chain density of amphiphilic centipede-like copolymer coating and exploration of QDs probes for tumor cell targeting and tracking. New Journal of Chemistry, 2012, 36, 2383.	1.4	16
44	Synthesis and characterization of DOX-conjugated dendrimer-modified magnetic iron oxide conjugates for magnetic resonance imaging, targeting, and drug delivery. Journal of Materials Chemistry, 2012, 22, 9594.	6.7	81
45	Novel water-soluble and pH-responsive anticancer drug nanocarriers: Doxorubicin–PAMAM dendrimer conjugates attached to superparamagnetic iron oxide nanoparticles (IONPs). Journal of Colloid and Interface Science, 2011, 363, 403-409.	5.0	111
46	Synthesis and photoluminescence study of diâ€dendron dendrimers derived from monoâ€Bocâ€protected ethylenediamine cores. Luminescence, 2011, 26, 264-270.	1.5	4
47	Synthesis and grafting of folate–PEC–PAMAM conjugates onto quantum dots for selective targeting of folate-receptor-positive tumor cells. Journal of Colloid and Interface Science, 2010, 350, 44-50.	5.0	68
48	Photoluminescence study of tetra-dendron dendrimers derived from ethylenediamine cores and di-dendron dendrimers derived from mono-Boc-protected ethylenediamine cores. Journal of Luminescence, 2010, 130, 576-581.	1.5	4