David W Hill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10638689/publications.pdf

Version: 2024-02-01

		331670	3	302126
52	1,659	21		39
papers	citations	h-index		g-index
52	52	52		1363
32	32	32		1303
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Physiological response and physical performance after 40 min and 90 min daytime nap opportunities. Research in Sports Medicine, 2023, 31, 881-894.	1.3	8
2	Effect of Previous-Day Alcohol Ingestion on Muscle Function and Performance of Severe-Intensity Exercise. International Journal of Sports Physiology and Performance, 2022, 17, 44-49.	2.3	6
3	A daytime 40-min nap opportunity after a simulated late evening soccer match reduces the perception of fatigue and improves 5-m shuttle run performance. Research in Sports Medicine, 2022, 30, 502-515.	1.3	11
4	Longer Nap Duration During Ramadan Observance Positively Impacts 5-m Shuttle Run Test Performance Performed in the Afternoon. Frontiers in Physiology, 2022, 13, 811435.	2.8	2
5	Sleep loss, mood state, and performance of extreme intensity cycling exercise. Biological Rhythm Research, 2022, 53, 1801-1810.	0.9	2
6	Exercise above the maximal lactate steady state does not elicit a $\langle i \rangle V t \langle i \rangle O \langle sub \rangle 2 \langle sub \rangle$ slow component that leads to attainment of $\langle i \rangle V t \langle i \rangle O \langle sub \rangle 2 $ max $\langle sub \rangle$. Applied Physiology, Nutrition and Metabolism, 2021, 46, 133-139.	1.9	8
7	Dietary Polyphenol and Methylsulfonylmethane Supplementation Improves Immune, DAMP Signaling, and Inflammatory Responses During Recovery From All-Out Running Efforts. Frontiers in Physiology, 2021, 12, 712731.	2.8	5
8	Alcohol After Resistance Exercise Does Not Affect Muscle Power Recovery. Journal of Strength and Conditioning Research, 2020, 34, 1938-1944.	2.1	6
9	The effect of time of day and chronotype on the relationships between mood state and performance in a Wingate test. Chronobiology International, 2020, 37, 1599-1610.	2.0	18
10	The Increase in Oxygen Demand During Severe Intensity Exercise Must be Included in Calculation of Oxygen Deficit. International Journal of Exercise Science, 2020, 13, 645-655.	0.5	2
11	Determining MAOD Using a Single Exhaustive Severe Intensity Test. International Journal of Exercise Science, 2020, 13, 702-713.	0.5	O
12	Effect of napping opportunity at different times of day on vigilance and shuttle run performance. Chronobiology International, 2019, 36, 1334-1342.	2.0	37
13	Nap Opportunity During the Daytime Affects Performance and Perceived Exertion in 5-m Shuttle Run Test. Frontiers in Physiology, 2019, 10, 779.	2.8	40
14	Effect of Acute Alcohol Ingestion on Resistance Exercise–Induced mTORC1 Signaling in Human Muscle. Journal of Strength and Conditioning Research, 2017, 31, 54-61.	2.1	20
15	Effect of alcohol after muscle-damaging resistance exercise on muscular performance recovery and inflammatory capacity in women. European Journal of Applied Physiology, 2017, 117, 1195-1206.	2.5	14
16	Pro- and anti-inflammatory cytokine responses to a 164-km road cycle ride in a hot environment. European Journal of Applied Physiology, 2016, 116, 2007-2015.	2.5	15
17	Reduced inflammatory and muscle damage biomarkers following oral supplementation with bioavailable curcumin. BBA Clinical, 2016, 5, 72-78.	4.1	112
18	The effect of post-resistance exercise alcohol ingestion on lipopolysaccharide-stimulated cytokines. European Journal of Applied Physiology, 2016, 116, 311-318.	2.5	11

#	Article	IF	Citations
19	Natural cocoa consumption: Potential to reduce atherogenic factors?. Journal of Nutritional Biochemistry, 2015, 26, 626-632.	4.2	34
20	Morning–evening differences in response to exhaustive severe-intensity exercise. Applied Physiology, Nutrition and Metabolism, 2014, 39, 248-254.	1.9	25
21	The Acute Hormonal Response to the Kettlebell Swing Exercise. Journal of Strength and Conditioning Research, 2014, 28, 2793-2800.	2.1	17
22	Effect of plasma donation and blood donation on aerobic and anaerobic responses in exhaustive, severe-intensity exercise. Applied Physiology, Nutrition and Metabolism, 2013, 38, 551-557.	1.9	19
23	Postresistance Exercise Ethanol Ingestion and Acute Testosterone Bioavailability. Medicine and Science in Sports and Exercise, 2013, 45, 1825-1832.	0.4	15
24	The effect of pedalling cadence on maximal accumulated oxygen deficit. European Journal of Applied Physiology, 2012, 112, 2637-2643.	2.5	7
25	Maximal accumulated oxygen deficit in running and cycling. Applied Physiology, Nutrition and Metabolism, 2011, 36, 831-838.	1.9	28
26	Oxygen uptake kinetics during severe intensity running and cycling. European Journal of Applied Physiology, 2003, 89, 612-618.	2.5	61
27	Effect of sampling strategy on measures of V?O2peak obtained using commercial breath-by-breath systems. European Journal of Applied Physiology, 2003, 89, 564-569.	2.5	22
28	Modeling the Relationship between Velocity and Time to Fatigue in Rowing. Medicine and Science in Sports and Exercise, 2003, 35, 2098-2105.	0.4	30
29	Maximal Accumulated O ₂ Deficit in Running and Cycling. Applied Physiology, Nutrition, and Metabolism, 2002, 27, 463-478.	1.7	21
30	The relationship between power and the time to achieve &OV0312O2max. Medicine and Science in Sports and Exercise, 2002, 34, 709-714.	0.4	110
31	The relationship between power and the time to achieve & amp; OV0312; O2max. Medicine and Science in Sports and Exercise, 2002, 34, 709-714.	0.4	72
32	The Response at the Onset of Severe Intensity Exercise. Applied Physiology, Nutrition, and Metabolism, 2001, 26, 350-355.	1.7	13
33	Determination of Critical Power by Pulmonary Gas Exchange. Applied Physiology, Nutrition, and Metabolism, 1999, 24, 74-86.	1.7	53
34	Energy system contributions in middle-distance running events. Journal of Sports Sciences, 1999, 17, 477-483.	2.0	64
35	Influence of Time of Day on Anaerobic Capacity. Perceptual and Motor Skills, 1998, 86, 592-594.	1.3	10
36	Temporal specificity in adaptations to high-intensity exercise training. Medicine and Science in Sports and Exercise, 1998, 30, 450-455.	0.4	36

#	Article	IF	Citations
37	Determination of Accumulated O2 Deficit in Exhaustive Short-Duration Exercise. Applied Physiology, Nutrition, and Metabolism, 1996, 21, 63-74.	1.7	10
38	Significance of time to exhaustion during exercise at the velocity associated with \$\$dot VO_{2max}\$\$. European Journal of Applied Physiology and Occupational Physiology, 1996, 72, 383-386.	1.2	30
39	Running velocity at ??VO2max. Medicine and Science in Sports and Exercise, 1996, 28, 114-119.	0.4	50
40	Application of the Critical Power Concept to Young Swimmers. Pediatric Exercise Science, 1995, 7, 281-293.	1.0	21
41	Aerobic and anaerobic contributions to exhaustive highâ€intensity exercise after sleep deprivation. Journal of Sports Sciences, 1994, 12, 455-461.	2.0	14
42	The Critical Power Concept. Sports Medicine, 1993, 16, 237-254.	6.5	313
43	A comparison of methods of estimating anaerobic work capacity. Ergonomics, 1993, 36, 1495-1500.	2.1	43
44	Stability of Parameter Estimates Derived From the Power/Time Relationship. Applied Physiology, Nutrition, and Metabolism, 1993, 18, 43-47.	1.7	25
45	Effects of Jet Lag on Factors Related to Sport Performance. Applied Physiology, Nutrition, and Metabolism, 1993, 18, 91-103.	1.7	37
46	Calculation of Aerobic Contribution during High Intensity Exercise. Research Quarterly for Exercise and Sport, 1992, 63, 85-88.	1.4	15
47	Haemodynamic Responses to Weightlifting Exercise. Sports Medicine, 1991, 12, 1-7.	6.5	36
48	Effect of Time of Day on the Relationship between Mood State, Anaerobic Power, and Capacity. Perceptual and Motor Skills, 1991, 72, 83-87.	1.3	14
49	Influence of Time of Day on Responses to the Profile of Mood States. Perceptual and Motor Skills, 1991, 72, 434-434.	1.3	22
50	Circadian specificity in exercise training. Ergonomics, 1989, 32, 79-92.	2.1	42
51	Equations to Calculate the Effects of Plasma Volume Change on Blood and Plasma Concentrations. Research Quarterly for Exercise and Sport, 1988, 59, 169-172.	1.4	3
52	Plasma volume change during heavy-resistance weight lifting. European Journal of Applied Physiology and Occupational Physiology, 1986, 55, 44-48.	1.2	30