
Jinlong Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10638539/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spontaneously Selfâ€Assembly of a 2D/3D Heterostructure Enhances the Efficiency and Stability in Printed Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2000173.	19.5	126
2	Vertically Aligned 2D/3D Pb–Sn Perovskites with Enhanced Charge Extraction and Suppressed Phase Segregation for Efficient Printable Solar Cells. ACS Energy Letters, 2020, 5, 1386-1395.	17.4	111
3	A Generalized Crystallization Protocol for Scalable Deposition of Highâ€Quality Perovskite Thin Films for Photovoltaic Applications. Advanced Science, 2019, 6, 1901067.	11.2	97
4	Tailoring C ₆₀ for Efficient Inorganic CsPbI ₂ Br Perovskite Solar Cells and Modules. Advanced Materials, 2020, 32, e1907361.	21.0	88
5	Rational Interface Design and Morphology Control for Bladeâ€Coating Efficient Flexible Perovskite Solar Cells with a Record Fill Factor of 81%. Advanced Functional Materials, 2020, 30, 2001240.	14.9	77
6	High performance graphene-based foam fabricated by a facile approach for oil absorption. Journal of Materials Chemistry A, 2017, 5, 11263-11270.	10.3	76
7	Cation-size mismatch and interface stabilization for efficient NiOx-based inverted perovskite solar cells with 21.9% efficiency. Nano Energy, 2021, 88, 106285.	16.0	66
8	2D-3D heterostructure enables scalable coating of efficient low-bandgap Sn–Pb mixed perovskite solar cells. Nano Energy, 2019, 66, 104099.	16.0	63
9	Preparation and characterization of chiral polyaniline/barium hexaferrite composite with enhanced microwave absorbing properties. Journal of Alloys and Compounds, 2014, 593, 24-29.	5.5	61
10	Promoting Reversible Redox Kinetics by Separator Architectures Based on CoS ₂ /HPGC Interlayer as Efficient Polysulfideâ€īrapping Shield for Li–S Batteries. Small, 2020, 16, e2002046.	10.0	60
11	An Embedding 2D/3D Heterostructure Enables Highâ€Performance FAâ€Alloyed Flexible Perovskite Solar Cells with Efficiency over 20%. Advanced Science, 2021, 8, e2101856.	11.2	57
12	Overcoming photovoltage deficit <i>via</i> natural amino acid passivation for efficient perovskite solar cells and modules. Journal of Materials Chemistry A, 2021, 9, 5857-5865.	10.3	43
13	Managing Phase Orientation and Crystallinity of Printed Dion–Jacobson 2D Perovskite Layers via Controlling Crystallization Kinetics. Advanced Functional Materials, 2022, 32, .	14.9	33
14	Biopolymer passivation for high-performance perovskite solar cells by blade coating. Journal of Energy Chemistry, 2021, 54, 45-52.	12.9	29
15	Spiro‣inked Molecular Holeâ€Transport Materials for Highly Efficient Inverted Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900389.	5.8	28
16	Dual-confined SeS2 cathode based on polyaniline-assisted double-layered micro/mesoporous carbon spheres for advanced Li–SeS2 battery. Journal of Power Sources, 2020, 455, 227955.	7.8	28
17	Natural methionine-passivated MAPbI3 perovskite films for efficient and stable solar devices. Advanced Composites and Hybrid Materials, 2021, 4, 1261-1269.	21.1	27
18	Nitrogen-doped hierarchical porous carbons prepared via freeze-drying assisted carbonization for high-performance supercapacitors. Applied Surface Science, 2019, 496, 143643.	6.1	26

Jinlong Hu

#	Article	IF	CITATIONS
19	Inorganic halide perovskite materials and solar cells. APL Materials, 2019, 7, .	5.1	21
20	Polyfluorene Copolymers as Highâ€Performance Holeâ€Transport Materials for Inverted Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900384.	5.8	21
21	Improving the Photovoltage of Blade-Coated MAPbl ₃ Perovskite Solar Cells via Surface and Grain Boundary Passivation with π-Conjugated Phenyl Boronic Acids. ACS Applied Materials & Interfaces, 2021, 13, 46566-46576.	8.0	15
22	Reducing energy barrier of δ-to-α phase transition for printed formamidinium lead iodide photovoltaic devices. Nano Energy, 2022, 91, 106658.	16.0	15
23	Phytic acid assisted preparation of high-performance supercapacitor electrodes from noncarbonizable polyvinylpyrrolidone. Journal of Power Sources, 2020, 448, 227402.	7.8	14
24	Temperature-Assisted Crystal Growth of Photovoltaic α-Phase FAPbI ₃ Thin Films by Sequential Blade Coating. ACS Applied Materials & Interfaces, 2020, 12, 55830-55837.	8.0	11
25	Achieving F-doped porous hollow carbon nanospheres with ultrahigh pore volume <i>via</i> a gas–solid interface reaction. Journal of Materials Chemistry A, 2021, 9, 27560-27567.	10.3	11
26	Texturing In-Situ: N/F Dual-Doped hollow porous carbon nanospheres for advanced Li-S batteries. Applied Surface Science, 2022, 599, 153951.	6.1	11
27	Interfacial engineering with carbon–graphite–Cu _{Î′} Ni _{1â~δ} O for ambient-air stable composite-based hole-conductor-free perovskite solar cells. Nanoscale Advances, 2020, 2, 5883-5889.	4.6	8
28	Synthesis of silicon oxycarbonitride nanosphere as cathode host for lithium–sulfur batteries. Journal of Alloys and Compounds, 2021, 860, 157903.	5.5	7
29	In situ preparation of uniform and ultrafine SnO2 nanocrystals anchored within a mesoporous carbon network as advanced anode materials. Inorganic Chemistry Frontiers, 2018, 5, 378-385.	6.0	6
30	Si@Sâ€doped C anode with high cycling stability using PVAâ€ <i>g</i> â€PAA water soluble binder for lithiumâ€ion batteries. Journal of Applied Polymer Science, 2020, 137, 48764.	2.6	6
31	N/S Co-doped microporous carbon derived from PSSH-Melamine salt solution as cathode host for Lithium-Selenium batteries. Journal of Colloid and Interface Science, 2021, 610, 643-643.	9.4	6
32	Hierarchical Porous Carbon Membrane Embedded with Pyrolyzed Coâ€Based Metalâ^'Organic Frameworks as Multifunctional Interlayers for Advanced Liâ^'SeS ₂ Batteries. Energy Technology, 2021, 9, 2100274.	3.8	4
33	Porous Carbon Nanosphere with Multiple Heteroatom Doping Derived from Silicon Oxycarbonitride as Sulfur Host for Lithium–Sulfur Batteries. Energy Technology, 2021, 9, 2100067.	3.8	2