Henry Hirschberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10638380/publications.pdf

Version: 2024-02-01

101 2,683 30 papers citations h-index

101 101 2511 all docs docs citations times ranked citing authors

48

g-index

#	Article	IF	CITATIONS
1	Inhibition of glioma development by doxorubicin-photochemical internalization generated macrophage vaccine: A survival study in rats. Photodiagnosis and Photodynamic Therapy, 2022, 38, 102879.	1.3	2
2	Enhanced gene transfection of macrophages by photochemical internalization: Potential for gene-directed enzyme prodrug therapy of gliomas. Photodiagnosis and Photodynamic Therapy, 2021, 33, 102098.	1.3	1
3	An improved in vitro photochemical internalization protocol for 3D spheroid cultures. Lasers in Medical Science, 2021, 36, 1567-1571.	1.0	1
4	Photosensitizer delivery by fibrin glue: potential for bypassing the blood-brain barrier. Lasers in Medical Science, 2020, 36, 1031-1038.	1.0	2
5	Intercellular Bioimaging and Biodistribution of Gold Nanoparticle-Loaded Macrophages for Targeted Drug Delivery. Electronics (Switzerland), 2020, 9, 1105.	1.8	11
6	Photochemical Internalization for Intracellular Drug Delivery. From Basic Mechanisms to Clinical Research. Journal of Clinical Medicine, 2020, 9, 528.	1.0	60
7	Biomimetic Gold Nanoshell-Loaded Macrophage for Photothermal Biomedicine. BioMed Research International, 2020, 2020, 1-14.	0.9	13
8	Macrophages as delivery vehicles for anticancer agents. Therapeutic Delivery, 2019, 10, 189-201.	1.2	12
9	The effects of low irradiance long duration photochemical internalization on glioma spheroids. Photodiagnosis and Photodynamic Therapy, 2019, 26, 442-447.	1.3	8
10	Photochemical Internalization Enhanced Nonviral Suicide Gene Therapy. Methods in Molecular Biology, 2019, 1895, 165-176.	0.4	1
11	Photochemical internalization enhanced macrophage delivered chemotherapy. Photodiagnosis and Photodynamic Therapy, 2018, 21, 156-162.	1.3	15
12	Enhancing the effects of chemotherapy by combined macrophage-mediated photothermal therapy (PTT) and photochemical internalization (PCI). Lasers in Medical Science, 2018, 33, 1747-1755.	1.0	11
13	Limiting glioma development by photodynamic therapy-generated macrophage vaccine and allo-stimulation: an in vivo histological study in rats. Journal of Biomedical Optics, 2018, 23, 1.	1.4	6
14	Photodynamic therapy mediated immune therapy of brain tumors. Neuroimmunology and Neuroinflammation, 2018, 5, 27.	1.4	37
15	Cell Mediated Photothermal Therapy of Brain Tumors. Journal of NeuroImmune Pharmacology, 2017, 12, 99-106.	2.1	31
16	Photodynamic therapy enhances the efficacy of gene-directed enzyme prodrug therapy. Photodiagnosis and Photodynamic Therapy, 2017, 18, 140-148.	1.3	6
17	Synergistic efficacy of ultrasound, sonosensitizers and chemotherapy: a review. Therapeutic Delivery, 2017, 8, 331-342.	1.2	25
18	Photothermal Therapy Employing Gold Nanoparticle- Loaded Macrophages as Delivery Vehicles: Comparing the Efficiency of Nanoshells Versus Nanorods. Journal of Environmental Pathology, Toxicology and Oncology, 2017, 36, 229-235.	0.6	14

#	Article	IF	Citations
19	Comparing the Effects of Light- or Sonic-Activated Drug Delivery: Photochemical/Sonochemical Internalization. Journal of Environmental Pathology, Toxicology and Oncology, 2016, 35, 91-98.	0.6	7
20	Focused ultrasound-mediated sonochemical internalization: an alternative to light-based therapies. Journal of Biomedical Optics, 2016, 21, 078002.	1.4	15
21	Synergistic chemotherapy by combined moderate hyperthermia and photochemical internalization. Biomedical Optics Express, 2016, 7, 1240.	1.5	12
22	Photothermal enhancement of chemotherapy mediated by gold-silica nanoshell-loaded macrophages:in vitrosquamous cell carcinoma study. Journal of Biomedical Optics, 2016, 21, 018004.	1.4	15
23	Activating Photodynamic Therapy in vitro with Cerenkov Radiation Generated from Yttrium-90. Journal of Environmental Pathology, Toxicology and Oncology, 2016, 35, 185-192.	0.6	44
24	Efficacy of combined photothermal therapy and chemotherapeutic drugs. Proceedings of SPIE, 2015, , .	0.8	0
25	Combined concurrent nanoshell loaded macrophage-mediated photothermal and photodynamic therapies. , 2015, , .		0
26	Macrophage mediated PCI enhanced gene-directed enzyme prodrug therapy. Proceedings of SPIE, 2015, , .	0.8	0
27	Macrophages as nanoparticle delivery vectors for photothermal therapy of brain tumors. Therapeutic Delivery, 2015, 6, 371-384.	1.2	30
28	Characterizing low fluence thresholds for in vitro photodynamic therapy. Biomedical Optics Express, 2015, 6, 770.	1.5	32
29	Nanoparticle-loaded macrophage-mediated photothermal therapy: potential for glioma treatment. Lasers in Medical Science, 2015, 30, 1357-1365.	1.0	75
30	Photothermal therapy of human glioma spheroids with gold-silica nanoshells and gold nanorods: a comparative study. , 2014 , , .		5
31	Ultra low fluence rate photodynamic therapy: simulation of light emitted by the Cerenkov effect. Proceedings of SPIE, 2014, , .	0.8	4
32	Photochemical internalization-mediated nonviral gene transfection: polyamine core-shell nanoparticles as gene carrier. Journal of Biomedical Optics, 2014, 19, 105009.	1.4	21
33	Increased sensitivity of glioma cells to 5-fluorocytosine following photo-chemical internalization enhanced nonviral transfection of the cytosine deaminase suicide gene. Journal of Neuro-Oncology, 2014, 118, 29-37.	1.4	17
34	Combined concurrent photodynamic and gold nanoshell loaded macrophageâ€mediated photothermal therapies: An <i>in vitro</i> study on squamous cell head and neck carcinoma. Lasers in Surgery and Medicine, 2014, 46, 310-318.	1.1	62
35	Photochemical internalization (PCI) enhanced nonviral transfection of tumor suppressor and pro-drug activating genes; a potential treatment modality for gliomas. Proceedings of SPIE, 2014, , .	0.8	0
36	Lasers in Diagnostics and Treatment of Brain Diseases. , 2014, , 117-144.		0

#	Article	IF	Citations
37	Increased nanoparticleâ€loaded exogenous macrophage migration into the brain following PDTâ€induced blood–brain barrier disruption. Lasers in Surgery and Medicine, 2013, 45, 524-532.	1.1	40
38	Photo-activated Cancer Therapy: Potential for Treatment of Brain Tumors., 2013,, 253-271.		1
39	Photochemical internalization of bleomycin for glioma treatment. Journal of Biomedical Optics, 2012, 17, 058001.	1.4	38
40	Glioma cell growth inhibition following photochemical internalization enhanced nonâ€viral PTEN gene transfection. Lasers in Surgery and Medicine, 2012, 44, 746-754.	1.1	12
41	Photochemical Internalization-Mediated Delivery of Chemotherapeutic Agents in Human Breast Tumor Cell Lines. Journal of Environmental Pathology, Toxicology and Oncology, 2012, 31, 49-59.	0.6	13
42	Macrophages as Cell-Based Delivery Systems for Nanoshells in Photothermal Therapy. Annals of Biomedical Engineering, 2012, 40, 507-515.	1.3	110
43	Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells. Journal of Neuro-Oncology, 2011, 104, 439-448.	1.4	131
44	Cerebral edema following photodynamic therapy using endogenous and exogenous photosensitizers in normal brain. Lasers in Surgery and Medicine, 2011, 43, 892-900.	1.1	29
45	Siteâ€specific opening of the bloodâ€brain barrier. Journal of Biophotonics, 2010, 3, 356-367.	1.1	68
46	The effects of ultra low fluence rate single and repetitive photodynamic therapy on glioma spheroids. Lasers in Surgery and Medicine, 2009, 41, 578-584.	1.1	47
47	Motexafin gadolinium enhances the efficacy of aminolevulinic acid mediated-photodynamic therapy in human glioma spheroids. Journal of Neuro-Oncology, 2009, 91, 141-149.	1.4	8
48	Targeted delivery of bleomycin to the brain using photo-chemical internalization of Clostridium perfringens epsilon prototoxin. Journal of Neuro-Oncology, 2009, 95, 317-329.	1.4	43
49	Disruption of the blood–brain barrier following ALAâ€mediated photodynamic therapy. Lasers in Surgery and Medicine, 2008, 40, 535-542.	1.1	72
50	Determination of fluence rate and temperature distributions in the rat brain; implications for photodynamic therapy. Journal of Biomedical Optics, 2007, 12, 014003.	1.4	22
51	Comparing the effects of repetitive and chronic ALA mediated PDT on human glioma spheroids. , 2007, ,		1
52	Increased brain edema following 5-aminolevulinic acid mediated photodynamic in normal and tumor bearing rats., 2007,,.		1
53	Photodynamic Therapy of Human Glioma Spheroids Using 5-Aminolevulinic Acid ¶. Photochemistry and Photobiology, 2007, 72, 128-134.	1.3	3
54	Effects of Combined Photodynamic Therapy and Ionizing Radiationon Human Glioma Spheroids \hat{A} ¶. Photochemistry and Photobiology, 2007, 76, 411-416.	1.3	0

#	Article	IF	CITATIONS
55	Utility of the F98 Rat Glioma Model for Photodynamic Therapy. Journal of Environmental Pathology, Toxicology and Oncology, 2007, 26, 149-155.	0.6	9
56	Photodynamic therapy of newly implanted glioma cells in the rat brain. Lasers in Surgery and Medicine, 2006, 38, 540-548.	1.1	52
57	Multicell tumor spheroids in photodynamic therapy. Lasers in Surgery and Medicine, 2006, 38, 555-564.	1.1	51
58	Effects of ALA-mediated photodynamic therapy on the invasiveness of human glioma cells. Lasers in Surgery and Medicine, 2006, 38, 939-945.	1.1	30
59	Influence of light fluence rate on the effects of photodynamic therapy in an orthotopic rat glioma model. Journal of Neurosurgery, 2006, 104, 109-117.	0.9	72
60	Repetitive Photodynamic Therapy of Malignant Brain Tumors. Journal of Environmental Pathology, Toxicology and Oncology, 2006, 25, 261-280.	0.6	47
61	Immunotoxin treatment targeted to the high-molecular-weight melanoma—associated antigen prolonging the survival of immunodeficient rats with invasive intracranial human glioblastoma multiforme. Journal of Neurosurgery, 2004, 100, 320-327.	0.9	28
62	Enhanced cytotoxic effects of 5-aminolevulinic acid-mediated photodynamic therapy by concurrent hyperthermia in glioma spheroids. Journal of Neuro-Oncology, 2004, 70, 289-299.	1.4	44
63	Interstitial light application for photodynamic therapy in a rat brain tumor model. , 2004, , .		4
64	Repetitive 5-aminolevulinic acid mediated photodynamic therapy of rat glioma. , 2004, , .		4
65	Repetitive 5-aminolevulinic acid-mediated photodynamic therapy on human glioma spheroids. Journal of Neuro-Oncology, 2003, 62, 243-250.	1.4	51
66	Effects of Combined Photodynamic Therapy and Ionizing Radiationon Human Glioma Spheroids¶. Photochemistry and Photobiology, 2002, 76, 411.	1.3	30
67	A cost-minimising analysis of standard radiotherapy and two experimental therapies in glioblastoma. Radiotherapy and Oncology, 2002, 62, 227-231.	0.3	11
68	Stereotactic Target Localization Accuracy in Interventional Magnetic Resonance Imaging. Stereotactic and Functional Neurosurgery, 2002, 79, 191-201.	0.8	4
69	Intratumoral immunotoxin treatment of human malignant brain tumors in immunodeficient animals. International Journal of Cancer, 2002, 97, 846-852.	2.3	38
70	ALA- and ALA-ester-mediated photodynamic therapy of human glioma spheroids. Journal of Neuro-Oncology, 2002, 57, 1-7.	1.4	31
71	5-Aminolevulinic acid-based photodynamic detection and therapy of brain tumors (review). International Journal of Oncology, 2002, 21, 577-82.	1.4	30
72	Characterization of optical and thermal distributions from an intracranial balloon applicator for photodynamic therapy., 2001,,.		9

#	Article	IF	CITATIONS
73	Development of a novel indwelling balloon applicator for optimizing light delivery in photodynamic therapy. Lasers in Surgery and Medicine, 2001, 29, 406-412.	1.1	60
74	Photodynamic Therapy of Human Glioma Spheroids Using 5-Aminolevulinic Acid¶. Photochemistry and Photobiology, 2000, 72, 128.	1.3	67
75	Growth of precultured human glioma biopsy specimens in nude rat brain. Journal of Neurosurgery, 1999, 90, 125-132.	0.9	113
76	An indwelling brachytherapy balloon catheter: potential use as an intracranial light applicator for photodynamic therapy. Journal of Neuro-Oncology, 1999, 44, 15-21.	1.4	17
77	Neuronavigation in Intraoperative MRI. Computer Aided Surgery, 1999, 4, 200-207.	1.8	29
78	<title>Effects of photodynamic therapy on human glioma spheroids</title> ., 1999,,.		2
79	Incorporation of Ultrasonic Imaging in an Optically Coupled Frameless Stereotactic System. , 1997, 68, 75-80.		16
80	Implementation of a Stereotactic Microscope Using an Optically Coupled Tracking System. Stereotactic and Functional Neurosurgery, 1996, 66, 96-101.	0.8	10
81	99mTc-hexamethylpropyleneamine oxime leukocyte scintigraphy and C-reactive protein levels in the differential diagnosis of brain abscesses. Journal of Neurosurgery, 1992, 77, 732-736.	0.9	29
82	Immunomagnetic separation of infiltrating T lymphocytes from brain tumors. Journal of Neurosurgery, 1989, 71, 218-223.	0.9	4
83	Human interleukin-2 activated cytotoxic cells kill autologous glioma cells in vitro. Journal of Neuro-Oncology, 1988, 6, 85-92.	1.4	4
84	Comparison of in vitro glioma cell cytotoxicity of LAK cells from glioma patients and healthy subjects. Journal of Neurosurgery, 1988, 69, 234-238.	0.9	15
85	C-Reactive protein levels in the differential diagnosis of brain abscesses. Journal of Neurosurgery, 1987, 67, 358-360.	0.9	29
86	Radioimmunoassay in microtiter plates. Journal of Immunological Methods, 1987, 103, 55-58.	0.6	0
87	Accessory cell function of human endothelial cells: presentation of antigen to T cells. Developments in Cardiovascular Medicine, 1984, , 385-392.	0.1	0
88	Cell mediated lympholysis; a modified technique using 111 indium-oxine-labelled targets. Journal of Immunological Methods, 1983 , 60 , 379 - 390 .	0.6	7
89	The effects of corticosteroids on the antigen presenting properties of human monocytes and endothelial cells. Clinical Immunology and Immunopathology, 1982, 23, 577-585.	2.1	26
90	HLA antigens on glioma cells from short term cultures. Tissue Antigens, 1982, 19, 146-153.	1.0	4

#	Article	IF	CITATIONS
91	Antigen Presentation by Vascular Endothelial Cells and Epidermal Langerhans Cells: The Role of HLA-DR. Immunological Reviews, 1982, 66, 57-77.	2.8	174
92	Presentation of viral antigens by human vascular endothelial cells in vitro. Human Immunology, 1981, 2, 235-246.	1.2	37
93	IMMUNOGENICITY OF FOREIGN TISSUES. Transplantation, 1981, 31, 96-97.	0.5	8
94	Cell mediated lympholysis: CML. A microplate technique requiring few target cells and employing a new method of supernatant collection. Journal of Immunological Methods, 1977, 16, 131-141.	0.6	66
95	Stimulation of Human Lymphocytes by Allogenic Macrophages <i>in vitro</i> . Tissue Antigens, 1977, 10, 306-314.	1.0	4
96	THE PRESENCE OF HLA-D DETERMINANTS ON HUMAN SKIN CELLS. Transplantation, 1976, 21, 343-346.	0.5	13
97	Typing for HLAâ€D Determinants. Comparison of Typing Results using Homozygous Stimulating Cells and Primed Cultures. Tissue Antigens, 1976, 7, 213-219.	1.0	30
98	THE HUMAN MIXED LYMPHOCYTE-ENDOTHELIUM CULTURE INTERACTION. Transplantation, 1975, 19, 495-504.	0.5	96
99	Lymphocyte Activating Alloantigens on Human Epidermal Cells. Tissue Antigens, 1975, 6, 183-194.	1.0	23
100	Specificity of human histocompatibility antigen reactive cells in vitro. Cellular Immunology, 1974, 10, 458-466.	1.4	3
101	Specific in vitro elimination of Histocompatibility Antigen Reactive Cells (HARC). Journal of Immunological Methods, 1973, 3, 251-263.	0.6	18