Thomas Lecuit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1063826/publications.pdf Version: 2024-02-01

THOMASLECUIT

#	Article	IF	CITATIONS
1	In search of conserved principles of planar cell polarization. Current Opinion in Genetics and Development, 2022, 72, 69-81.	3.3	7
2	Mechanochemical Principles of Spatial and Temporal Patterns in Cells and Tissues. Annual Review of Cell and Developmental Biology, 2022, 38, 321-347.	9.4	34
3	Deterministic and Stochastic Rules of Branching Govern Dendrite Morphogenesis of Sensory Neurons. Current Biology, 2021, 31, 459-472.e4.	3.9	29
4	Distinct actin-dependent nanoscale assemblies underlie the dynamic and hierarchical organization of E-cadherin. Current Biology, 2021, 31, 1726-1736.e4.	3.9	19
5	Formation of polarized contractile interfaces by self-organized Toll-8/Cirl GPCR asymmetry. Developmental Cell, 2021, 56, 1574-1588.e7.	7.0	40
6	Programmed and self-organized flow of information during morphogenesis. Nature Reviews Molecular Cell Biology, 2021, 22, 245-265.	37.0	157
7	Forward and feedback control mechanisms of developmental tissue growth. Cells and Development, 2021, 168, 203750.	1.5	6
8	Assembly of a persistent apical actin network by the formin Frl/Fmnl tunes epithelial cell deformability. Nature Cell Biology, 2020, 22, 791-802.	10.3	30
9	Genetic induction and mechanochemical propagation of a morphogenetic wave. Nature, 2019, 572, 467-473.	27.8	124
10	Distinct RhoGEFs Activate Apical and Junctional Contractility under Control of G Proteins during Epithelial Morphogenesis. Current Biology, 2019, 29, 3370-3385.e7.	3.9	69
11	Strengthen Your Junctions to Resist the Force. Developmental Cell, 2018, 47, 406-407.	7.0	0
12	Distinct contributions of tensile and shear stress on E-cadherin levels during morphogenesis. Nature Communications, 2018, 9, 5021.	12.8	100
13	Quantitative Control of GPCR Organization and Signaling by Endocytosis in Epithelial Morphogenesis. Current Biology, 2018, 28, 1570-1584.e6.	3.9	43
14	Fat2 and Lar Dance a Pas de Deux during Collective Cell Migration. Developmental Cell, 2017, 40, 425-426.	7.0	3
15	Viscoelastic Dissipation Stabilizes Cell Shape Changes during Tissue Morphogenesis. Current Biology, 2017, 27, 3132-3142.e4.	3.9	120
16	Morphogenesis one century after On Growth and Form. Development (Cambridge), 2017, 144, 4197-4198.	2.5	20
17	Modular activation of Rho1 by GPCR signalling imparts polarized myosin II activation during morphogenesis. Nature Cell Biology, 2016, 18, 261-270.	10.3	133
18	Mechanochemical Interplay Drives Polarization in Cellular and Developmental Systems. Current Topics in Developmental Biology, 2016, 116, 633-657.	2.2	11

Тномая Lecuit

#	Article	IF	CITATIONS
19	Mechanical Forces and Growth in Animal Tissues. Cold Spring Harbor Perspectives in Biology, 2016, 8, a019232.	5.5	130
20	A self-organized biomechanical network drives shape changes during tissue morphogenesis. Nature, 2015, 524, 351-355.	27.8	347
21	E-cadherin junctions as active mechanical integrators in tissue dynamics. Nature Cell Biology, 2015, 17, 533-539.	10.3	479
22	Local and tissue-scale forces drive oriented junction growth during tissue extension. Nature Cell Biology, 2015, 17, 1247-1258.	10.3	249
23	Actomyosin networks and tissue morphogenesis. Development (Cambridge), 2014, 141, 1789-1793.	2.5	191
24	Oscillation and Polarity of E-Cadherin Asymmetries Control Actomyosin Flow Patterns during Morphogenesis. Developmental Cell, 2013, 26, 162-175.	7.0	152
25	Mechanics of Epithelial Tissue Homeostasis and Morphogenesis. Science, 2013, 340, 1185-1189.	12.6	528
26	A global pattern of mechanical stress polarizes cell divisions and cell shape in the growing <i>Drosophila</i> wing disc. Development (Cambridge), 2013, 140, 4051-4059.	2.5	217
27	Adhesion Disengagement Uncouples Intrinsic and Extrinsic Forces to Drive Cytokinesis in Epithelial Tissues. Developmental Cell, 2013, 24, 227-241.	7.0	145
28	Principles of E-Cadherin Supramolecular Organization InÂVivo. Current Biology, 2013, 23, 2197-2207.	3.9	165
29	Stability and Dynamics of Cell–Cell Junctions. Progress in Molecular Biology and Translational Science, 2013, 116, 25-47.	1.7	53
30	Biomechanical regulation of contractility: spatial control and dynamics. Trends in Cell Biology, 2012, 22, 61-81.	7.9	263
31	Force Generation, Transmission, and Integration during Cell and Tissue Morphogenesis. Annual Review of Cell and Developmental Biology, 2011, 27, 157-184.	9.4	483
32	Spatial regulation of Dia and Myosin-II by RhoGEF2 controls initiation of E-cadherin endocytosis during epithelial morphogenesis. Nature Cell Biology, 2011, 13, 529-540.	10.3	240
33	Planar polarized actomyosin contractile flows control epithelial junction remodelling. Nature, 2010, 468, 1110-1114.	27.8	577
34	A two-tiered mechanism for stabilization and immobilization of E-cadherin. Nature, 2008, 453, 751-756.	27.8	365
35	Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nature Cell Biology, 2008, 10, 1401-1410.	10.3	535
36	Imaging Cellular and Molecular Dynamics in Live Embryos Using Fluorescent Proteins. Methods in Molecular Biology, 2008, 420, 219-238.	0.9	52

ТНОМАЅ LECUIT

#	Article	IF	CITATIONS
37	Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nature Reviews Molecular Cell Biology, 2007, 8, 633-644.	37.0	1,054
38	Developmental control of nuclear morphogenesis and anchoring by charleston, identified in a functional genomic screen of Drosophila cellularisation. Development (Cambridge), 2006, 133, 711-723.	2.5	78
39	Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature, 2004, 429, 667-671.	27.8	868
40	Distinct RhoGEFs Activate Apical and Junctional 1 Actomyosin Contractility Under Control of G Proteins During Epithelial Morphogenesis. SSRN Electronic Journal, 0, , .	0.4	2