
Kaiwei Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10638/publications.pdf Version: 2024-02-01

KANAELLI

#	Article	IF	CITATIONS
1	High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy, 2017, 41, 35-42.	8.2	132
2	Ultrasensitive label-free optical microfiber coupler biosensor for detection of cardiac troponin I based on interference turning point effect. Biosensors and Bioelectronics, 2018, 106, 99-104.	5.3	111
3	Gold nanoparticle amplified optical microfiber evanescent wave absorption biosensor for cancer biomarker detection in serum. Talanta, 2014, 120, 419-424.	2.9	106
4	Ultrasensitive detection of endocrine disruptors via superfine plasmonic spectral combs. Light: Science and Applications, 2021, 10, 181.	7.7	96
5	Mechanically Durable and Flexible Thermoelectric Films from PEDOT:PSS/PVA/Bi _{0.5} Sb _{1.5} Te ₃ Nanocomposites. Advanced Electronic Materials, 2017, 3, 1600554.	2.6	80
6	Elastic and Stretchable Functional Fibers: A Review of Materials, Fabrication Methods, and Applications. Advanced Fiber Materials, 2021, 3, 1-13.	7.9	74
7	Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference. Applied Physics Letters, 2016, 109, .	1.5	67
8	Highly sensitive gas refractometers based on optical microfiber modal interferometers operating at dispersion turning point. Optics Express, 2018, 26, 29148.	1.7	66
9	Operando monitoring of ion activities in aqueous batteries with plasmonic fiber-optic sensors. Nature Communications, 2022, 13, 547.	5.8	66
10	Spectral Characteristics and Ultrahigh Sensitivities Near the Dispersion Turning Point of Optical Microfiber Couplers. Journal of Lightwave Technology, 2018, 36, 2409-2415.	2.7	60
11	Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing. Sensors and Actuators B: Chemical, 2016, 223, 195-201.	4.0	58
12	Hybrid Graphene/Gold Plasmonic Fiberâ€Optic Biosensor. Advanced Materials Technologies, 2017, 2, 1600185.	3.0	58
13	Singleâ€Crystal SnSe Thermoelectric Fibers via Laserâ€Induced Directional Crystallization: From 1D Fibers to Multidimensional Fabrics. Advanced Materials, 2020, 32, e2002702.	11.1	57
14	Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler. Optics Letters, 2018, 43, 679.	1.7	56
15	Birefringence induced Vernier effect in optical fiber modal interferometers for enhanced sensing. Sensors and Actuators B: Chemical, 2018, 275, 16-24.	4.0	56
16	Ordered and Atomically Perfect Fragmentation of Layered Transition Metal Dichalcogenides <i>via</i> Mechanical Instabilities. ACS Nano, 2017, 11, 9191-9199.	7.3	53
17	Ultra-sensitive chemical and biological analysis <i>via</i> specialty fibers with built-in microstructured optofluidic channels. Lab on A Chip, 2018, 18, 655-661.	3.1	52
18	In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber. Optics Express, 2016, 24, 27674.	1.7	50

Kaiwei Li

#	Article	IF	CITATIONS
19	Ultraflexible Glassy Semiconductor Fibers for Thermal Sensing and Positioning. ACS Applied Materials & Interfaces, 2019, 11, 2441-2447.	4.0	50
20	Highly Oriented Electrospun P(VDFâ€TrFE) Fibers via Mechanical Stretching for Wearable Motion Sensing. Advanced Materials Technologies, 2018, 3, 1800033.	3.0	46
21	Discrimination of Bulk and Surface Refractive Index Change in Plasmonic Sensors with Narrow Bandwidth Resonance Combs. ACS Sensors, 2021, 6, 3013-3023.	4.0	46
22	Electron-Rich Two-Dimensional Molybdenum Trioxides for Highly Integrated Plasmonic Biosensing. ACS Photonics, 2018, 5, 347-352.	3.2	45
23	Electrochemical Plasmonic Fiber-optic Sensors for Ultra-Sensitive Heavy Metal Detection. Journal of Lightwave Technology, 2019, 37, 3495-3502.	2.7	45
24	Narrow bandwidth fiber-optic spectral combs for renewable hydrogen detection. Science China Information Sciences, 2020, 63, 1.	2.7	45
25	Flexible Piezoelectric Fibers for Acoustic Sensing and Positioning. Advanced Electronic Materials, 2017, 3, 1600449.	2.6	44
26	Plasmonic Fiber-Optic Photothermal Anemometers With Carbon Nanotube Coatings. Journal of Lightwave Technology, 2019, 37, 3373-3380.	2.7	43
27	One-step synthesis of cyclodextrin-capped gold nanoparticles for ultra-sensitive and highly-integrated plasmonic biosensors. Sensors and Actuators B: Chemical, 2019, 286, 429-436.	4.0	42
28	Tunable 3D light trapping architectures based on self-assembled SnSe ₂ nanoplate arrays for ultrasensitive SERS detection. Journal of Materials Chemistry C, 2019, 7, 10179-10186.	2.7	36
29	Design and analysis of surface plasmon resonance sensor based on high-birefringent microstructured optical fiber. Journal of Optics (United Kingdom), 2016, 18, 065005.	1.0	31
30	Twist sensor based on surface plasmon resonance excitation using two spectral combs in one tilted fiber Bragg grating. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1176.	0.9	31
31	Laserâ€Induced Inâ€Fiber Fluid Dynamical Instabilities for Precise and Scalable Fabrication of Spherical Particles. Advanced Functional Materials, 2017, 27, 1703245.	7.8	29
32	Azimuthally Polarized Radial Emission from a Quantum Dot Fiber Laser. ACS Photonics, 2016, 3, 2275-2279.	3.2	27
33	Optical Micro/Nanofiber-Based Localized Surface Plasmon Resonance Biosensors: Fiber Diameter Dependence. Sensors, 2018, 18, 3295.	2.1	27
34	Hybrid Plasmonic Fiber-Optic Sensors. Sensors, 2020, 20, 3266.	2.1	24
35	Thermally drawn multifunctional fibers: Toward the next generation of information technology. InformaĂnÃ-Materiály, 2022, 4, .	8.5	21
36	Formation of ultra-flexible, conformal, and nano-patterned photonic surfaces <i>via</i> polymer cold-drawing. Journal of Materials Chemistry C, 2018, 6, 4649-4657.	2.7	17

Kaiwei Li

#	Article	IF	CITATIONS
37	Axial Strain Sensor Based on Microfiber Couplers Operating at the Dispersion Turning Point. IEEE Sensors Journal, 2022, 22, 4090-4095.	2.4	14
38	Ultrawideband Surface Enhanced Raman Scattering in Hybrid Graphene Fragmentedâ€Gold Substrates via Coldâ€Etching. Advanced Optical Materials, 2019, 7, 1900905.	3.6	13
39	Mode Splitting in ITO-Nanocoated Tilted Fiber Bragg Gratings for Vector Twist Measurement. Journal of Lightwave Technology, 2021, 39, 4151-4157.	2.7	11
40	High-Sensitivity, Large Dynamic Range Refractive Index Measurement Using an Optical Microfiber Coupler. Sensors, 2019, 19, 5078.	2.1	10
41	Advanced Thermally Drawn Multimaterial Fibers: Structure-Enabled Functionalities. Advanced Devices & Instrumentation, 2021, 2021, .	4.0	10
42	Ultrasensitive interferometers based on zigzag-shaped tapered optical microfibers operating at the dispersion turning point. Optics Express, 2021, 29, 36926.	1.7	10
43	Synergistic SERS enhancement and <i>in situ</i> monitoring of photocatalytic reactions in a plasmonic metal/ferroelectric hybrid system by the light-induced pyroelectric effect. Journal of Materials Chemistry A, 2022, 10, 14078-14089.	5.2	9
44	On-Demand Fabrication of Optical Microfiber Couplers With Precisely Controlled Dispersion Turning Points: Towards Sensing Application in Liquids. Journal of Lightwave Technology, 2021, 39, 667-673.	2.7	7
45	Integrated liquid crystal photonic bandgap fiber devices. Frontiers of Optoelectronics, 2016, 9, 466-482.	1.9	6
46	Broadband Acoustic Sensing with Optical Nanofiber Couplers Working at the Dispersion Turning Point. Sensors, 2022, 22, 4940.	2.1	5
47	A Flexible Dual-Core Optical Waveguide Sensor for Simultaneous and Continuous Measurement of Contact Force and Position. , 2020, , .		4
48	High-Precision Large-Range Optical Fiber Interferometric Piezometer and Its Wideband Interferometry for Water Pressure Measurement. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-13.	2.4	4
49	Tunable photonic nanojets from a micro-cylinder with a dielectric nano-layer. Optik, 2021, 225, 165878.	1.4	3
50	Photothermal anemometer based on carbon nanotube-coated highly tilted fiber Bragg grating-assisted SPR sensor. , 2019, , .		1
51	Optical Microfiber Sensors. Progress in Optical Science and Photonics, 2020, , 59-80.	0.3	1
52	Determining the Orientation of Tilted Fiber Bragg Gratings Using a Planar Substrate. Journal of Lightwave Technology, 2023, 41, 4315-4321.	2.7	1
53	Wearable Electronics: Mechanically Durable and Flexible Thermoelectric Films from PEDOT:PSS/PVA/Bi _{0.5} Sb _{1.5} Te ₃ Nanocomposites (Adv. Electron.) Tj ETQq1	⊉.0 .7843	1 4 rgBT /Ov
54	Particles: Laserâ€Induced Inâ€Fiber Fluid Dynamical Instabilities for Precise and Scalable Fabrication of Spherical Particles (Adv. Funct. Mater. 43/2017). Advanced Functional Materials, 2017, 27, .	7.8	0

#	Article	IF	CITATIONS
55	High-Q silicon microsphere whispering gallery mode resonator fabricated by laser induced in-fiber capillary instability. , 2017, , .		0
56	Twist sensor based on surface plasmon resonance excitation using two spectral combs in one tilted fiber Bragg grating: publisher's note. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1435.	0.9	0
57	High Sensitivity Hydrogen Sensors Based on Optical Micro/Nanofiber Couplers Working at the Dispersion Turning Point. Journal of Lightwave Technology, 2023, 41, 4283-4289.	2.7	0
58	A micro-iridescent focus generated from a microsphere on a reflective nanograting. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	0