List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1063685/publications.pdf Version: 2024-02-01

FENCYLL XIE

#	Article	IF	CITATIONS
1	Self-Supported Nanoporous Cobalt Phosphide Nanowire Arrays: An Efficient 3D Hydrogen-Evolving Cathode over the Wide Range of pH 0–14. Journal of the American Chemical Society, 2014, 136, 7587-7590.	6.6	2,208
2	NiSe Nanowire Film Supported on Nickel Foam: An Efficient and Stable 3D Bifunctional Electrode for Full Water Splitting. Angewandte Chemie - International Edition, 2015, 54, 9351-9355.	7.2	1,242
3	Feâ€Doped CoP Nanoarray: A Monolithic Multifunctional Catalyst for Highly Efficient Hydrogen Generation. Advanced Materials, 2017, 29, 1602441.	11.1	834
4	A Costâ€Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity: FeP Nanowire Array as the Active Phase. Angewandte Chemie - International Edition, 2014, 53, 12855-12859.	7.2	816
5	Closely Interconnected Network of Molybdenum Phosphide Nanoparticles: A Highly Efficient Electrocatalyst for Generating Hydrogen from Water. Advanced Materials, 2014, 26, 5702-5707.	11.1	783
6	Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS ₂ Catalyst: Theoretical and Experimental Studies. Advanced Materials, 2018, 30, e1800191.	11.1	697
7	Greatly Improving Electrochemical N ₂ Reduction over TiO ₂ Nanoparticles by Iron Doping. Angewandte Chemie - International Edition, 2019, 58, 18449-18453.	7.2	379
8	Electrodeposited Co-doped NiSe ₂ nanoparticles film: a good electrocatalyst for efficient water splitting. Nanoscale, 2016, 8, 3911-3915.	2.8	367
9	Highâ€Performance Electrolytic Oxygen Evolution in Neutral Media Catalyzed by a Cobalt Phosphate Nanoarray. Angewandte Chemie - International Edition, 2017, 56, 1064-1068.	7.2	348
10	Ambient N2 fixation to NH3 at ambient conditions: Using Nb2O5 nanofiber as a high-performance electrocatalyst. Nano Energy, 2018, 52, 264-270.	8.2	331
11	MoO ₃ nanosheets for efficient electrocatalytic N ₂ fixation to NH ₃ . Journal of Materials Chemistry A, 2018, 6, 12974-12977.	5.2	292
12	Electrochemical N ₂ fixation to NH ₃ under ambient conditions: Mo ₂ N nanorod as a highly efficient and selective catalyst. Chemical Communications, 2018, 54, 8474-8477.	2.2	287
13	High-Performance Electrohydrogenation of N ₂ to NH ₃ Catalyzed by Multishelled Hollow Cr ₂ O ₃ Microspheres under Ambient Conditions. ACS Catalysis, 2018, 8, 8540-8544.	5.5	280
14	Identifying the Origin of Ti ³⁺ Activity toward Enhanced Electrocatalytic N ₂ Reduction over TiO ₂ Nanoparticles Modulated by Mixedâ€Valent Copper. Advanced Materials, 2020, 32, e2000299.	11.1	278
15	Co-MOF nanosheet array: A high-performance electrochemical sensor for non-enzymatic glucose detection. Sensors and Actuators B: Chemical, 2019, 278, 126-132.	4.0	256
16	Boron Nanosheet: An Elemental Two-Dimensional (2D) Material for Ambient Electrocatalytic N ₂ -to-NH ₃ Fixation in Neutral Media. ACS Catalysis, 2019, 9, 4609-4615.	5.5	253
17	Ag nanosheets for efficient electrocatalytic N ₂ fixation to NH ₃ under ambient conditions. Chemical Communications, 2018, 54, 11427-11430.	2.2	238
18	Electrochemical non-enzymatic glucose sensors: recent progress and perspectives. Chemical Communications, 2020, 56, 14553-14569.	2.2	235

#	Article	IF	CITATIONS
19	Ti ₃ C ₂ T _x (TÂ= F, OH) MXene nanosheets: conductive 2D catalysts for ambient electrohydrogenation of N ₂ to NH ₃ . Journal of Materials Chemistry A, 2018, 6, 24031-24035.	5.2	231
20	Aqueous electrocatalytic N ₂ reduction for ambient NH ₃ synthesis: recent advances in catalyst development and performance improvement. Journal of Materials Chemistry A, 2020, 8, 1545-1556.	5.2	226
21	Enabling Effective Electrocatalytic N ₂ Conversion to NH ₃ by the TiO ₂ Nanosheets Array under Ambient Conditions. ACS Applied Materials & Interfaces, 2018, 10, 28251-28255.	4.0	222
22	Honeycomb Carbon Nanofibers: A Superhydrophilic O ₂ â€Entrapping Electrocatalyst Enables Ultrahigh Mass Activity for the Twoâ€Electron Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 10583-10587.	7.2	219
23	Efficient Electrochemical N ₂ Reduction to NH ₃ on MoN Nanosheets Array under Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2018, 6, 9550-9554.	3.2	210
24	Three-Dimensional Ni ₂ P Nanoarray: An Efficient Catalyst Electrode for Sensitive and Selective Nonenzymatic Glucose Sensing with High Specificity. Analytical Chemistry, 2016, 88, 7885-7889.	3.2	209
25	Ambient N ₂ fixation to NH ₃ electrocatalyzed by a spinel Fe ₃ O ₄ nanorod. Nanoscale, 2018, 10, 14386-14389.	2.8	199
26	Self-assembled graphene platelet–glucose oxidase nanostructures for glucose biosensing. Biosensors and Bioelectronics, 2011, 26, 4491-4496.	5.3	176
27	An amorphous Co-carbonate-hydroxide nanowire array for efficient and durable oxygen evolution reaction in carbonate electrolytes. Nanoscale, 2017, 9, 16612-16615.	2.8	173
28	High-Efficiency Electrosynthesis of Ammonia with High Selectivity under Ambient Conditions Enabled by VN Nanosheet Array. ACS Sustainable Chemistry and Engineering, 2018, 6, 9545-9549.	3.2	170
29	High-performance non-enzymatic glucose detection: using a conductive Ni-MOF as an electrocatalyst. Journal of Materials Chemistry B, 2020, 8, 5411-5415.	2.9	170
30	Sâ€Doped Carbon Nanospheres: An Efficient Electrocatalyst toward Artificial N ₂ Fixation to NH ₃ . Small Methods, 2019, 3, 1800251.	4.6	165
31	Greatly Enhanced Electrocatalytic N ₂ Reduction on TiO ₂ via V Doping. Small Methods, 2019, 3, 1900356.	4.6	164
32	Sulfur-doped graphene for efficient electrocatalytic N ₂ -to-NH ₃ fixation. Chemical Communications, 2019, 55, 3371-3374.	2.2	152
33	Recent progress in the electrochemical ammonia synthesis under ambient conditions. EnergyChem, 2019, 1, 100011.	10.1	151
34	Ni foam: a novel three-dimensional porous sensing platform for sensitive and selective nonenzymatic glucose detection. Analyst, The, 2013, 138, 417-420.	1.7	150
35	Copperâ€Nitride Nanowires Array: An Efficient Dualâ€Functional Catalyst Electrode for Sensitive and Selective Nonâ€Enzymatic Glucose and Hydrogen Peroxide Sensing. Chemistry - A European Journal, 2017, 23, 4986-4989.	1.7	140
36	Ambient NH ₃ synthesis <i>via</i> electrochemical reduction of N ₂ over cubic sub-micron SnO ₂ particles. Chemical Communications, 2018, 54, 12966-12969.	2.2	138

#	Article	IF	CITATIONS
37	lron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Research, 2021, 14, 555-569.	5.8	137
38	Boron-Doped TiO ₂ for Efficient Electrocatalytic N ₂ Fixation to NH ₃ at Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 117-122.	3.2	131
39	Mn ₃ O ₄ Nanocube: An Efficient Electrocatalyst Toward Artificial N ₂ Fixation to NH ₃ . Small, 2018, 14, e1803111.	5.2	126
40	Insights into defective TiO ₂ in electrocatalytic N ₂ reduction: combining theoretical and experimental studies. Nanoscale, 2019, 11, 1555-1562.	2.8	126
41	Enhancing Electrocatalytic N ₂ Reduction to NH ₃ by CeO ₂ Nanorod with Oxygen Vacancies. ACS Sustainable Chemistry and Engineering, 2019, 7, 2889-2893.	3.2	121
42	An Fe(TCNQ) ₂ nanowire array on Fe foil: an efficient non-noble-metal catalyst for the oxygen evolution reaction in alkaline media. Chemical Communications, 2018, 54, 2300-2303.	2.2	120
43	Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3. Nano Research, 2019, 12, 919-924.	5.8	120
44	Electrocatalytic Hydrogenation of N ₂ to NH ₃ by MnO: Experimental and Theoretical Investigations. Advanced Science, 2019, 6, 1801182.	5.6	117
45	Boosting electrocatalytic N ₂ reduction by MnO ₂ with oxygen vacancies. Chemical Communications, 2019, 55, 4627-4630.	2.2	113
46	An MnO ₂ –Ti ₃ C ₂ T _x MXene nanohybrid: an efficient and durable electrocatalyst toward artificial N ₂ fixation to NH ₃ under ambient conditions. Journal of Materials Chemistry A, 2019, 7, 18823-18827.	5.2	107
47	FeP nanorod arrays on carbon cloth: a high-performance anode for sodium-ion batteries. Chemical Communications, 2018, 54, 9341-9344.	2.2	106
48	Sulfur dots–graphene nanohybrid: a metal-free electrocatalyst for efficient N ₂ -to-NH ₃ fixation under ambient conditions. Chemical Communications, 2019, 55, 3152-3155.	2.2	106
49	Ambient electrohydrogenation of N ₂ for NH ₃ synthesis on non-metal boron phosphide nanoparticles: the critical role of P in boosting the catalytic activity. Journal of Materials Chemistry A, 2019, 7, 16117-16121.	5.2	105
50	Defect-rich fluorographene nanosheets for artificial N ₂ fixation under ambient conditions. Chemical Communications, 2019, 55, 4266-4269.	2.2	105
51	Boosting electrocatalytic N ₂ reduction to NH ₃ on β-FeOOH by fluorine doping. Chemical Communications, 2019, 55, 3987-3990.	2.2	104
52	Ambient electrochemical N ₂ -to-NH ₃ conversion catalyzed by TiO ₂ decorated juncus effusus-derived carbon microtubes. Inorganic Chemistry Frontiers, 2022, 9, 1514-1519.	3.0	100
53	Ternary NiCoP nanosheet array on a Ti mesh: a high-performance electrochemical sensor for glucose detection. Chemical Communications, 2016, 52, 14438-14441.	2.2	98
54	Bimetal–organic framework MIL-53(Co–Fe): an efficient and robust electrocatalyst for the oxygen evolution reaction. Nanoscale, 2020, 12, 67-71.	2.8	98

#	Article	IF	CITATIONS
55	An Fe-MOF nanosheet array with superior activity towards the alkaline oxygen evolution reaction. Inorganic Chemistry Frontiers, 2018, 5, 1405-1408.	3.0	97
56	Cr ₂ O ₃ Nanoparticle-Reduced Graphene Oxide Hybrid: A Highly Active Electrocatalyst for N ₂ Reduction at Ambient Conditions. Inorganic Chemistry, 2019, 58, 2257-2260.	1.9	97
57	Ammonia Synthesis from Electrocatalytic N ₂ Reduction under Ambient Conditions by Fe ₂ O ₃ Nanorods. ChemCatChem, 2018, 10, 4530-4535.	1.8	95
58	Electrocatalytic N ₂ -to-NH ₃ conversion with high faradaic efficiency enabled using a Bi nanosheet array. Chemical Communications, 2019, 55, 5263-5266.	2.2	95
59	Cobalt phosphide nanowire array as an effective electrocatalyst for non-enzymatic glucose sensing. Journal of Materials Chemistry B, 2017, 5, 1901-1904.	2.9	94
60	Rational design of a multidimensional N-doped porous carbon/MoS ₂ /CNT nano-architecture hybrid for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 13835-13847.	5.2	93
61	Mn3O4 nanoparticles@reduced graphene oxide composite: An efficient electrocatalyst for artificial N2 fixation to NH3 at ambient conditions. Nano Research, 2019, 12, 1093-1098.	5.8	93
62	Spinel LiMn ₂ O ₄ Nanofiber: An Efficient Electrocatalyst for N ₂ Reduction to NH ₃ under Ambient Conditions. Inorganic Chemistry, 2019, 58, 9597-9601.	1.9	90
63	Ti ₂ O ₃ Nanoparticles with Ti ³⁺ Sites toward Efficient NH ₃ Electrosynthesis under Ambient Conditions. ACS Applied Materials & Interfaces, 2021, 13, 41715-41722.	4.0	89
64	Porous LaFeO3 nanofiber with oxygen vacancies as an efficient electrocatalyst for N2 conversion to NH3 under ambient conditions. Journal of Energy Chemistry, 2020, 50, 402-408.	7.1	87
65	WO ₃ nanosheets rich in oxygen vacancies for enhanced electrocatalytic N ₂ reduction to NH ₃ . Nanoscale, 2019, 11, 19274-19277.	2.8	84
66	Metal–organic framework-derived shuttle-like V ₂ O ₃ /C for electrocatalytic N ₂ reduction under ambient conditions. Inorganic Chemistry Frontiers, 2019, 6, 391-395.	3.0	79
67	Efficient electrohydrogenation of N ₂ to NH ₃ by oxidized carbon nanotubes under ambient conditions. Chemical Communications, 2019, 55, 4997-5000.	2.2	79
68	Electrocatalytic N ₂ -to-NH ₃ conversion using oxygen-doped graphene: experimental and theoretical studies. Chemical Communications, 2019, 55, 7502-7505.	2.2	78
69	A perovskite La ₂ Ti ₂ O ₇ nanosheet as an efficient electrocatalyst for artificial N ₂ fixation to NH ₃ in acidic media. Chemical Communications, 2019, 55, 6401-6404.	2.2	74
70	2020 Roadmap on gas-involved photo- and electro- catalysis. Chinese Chemical Letters, 2019, 30, 2089-2109.	4.8	71
71	Greatly Enhanced Electrocatalytic N ₂ Reduction over V ₂ O ₃ /C by P Doping. ChemNanoMat, 2020, 6, 1315-1319.	1.5	71
72	Bi nanodendrites for efficient electrocatalytic N ₂ fixation to NH ₃ under ambient conditions. Chemical Communications, 2020, 56, 2107-2110.	2.2	71

#	Article	IF	CITATIONS
73	Fe(<scp>iii</scp>)-based coordination polymernanoparticles: peroxidase-like catalytic activity and their application to hydrogen peroxide and glucose detection. Catalysis Science and Technology, 2012, 2, 432-436.	2.1	70
74	A Biomassâ€Derived Carbonâ€Based Electrocatalyst for Efficient N ₂ Fixation to NH ₃ under Ambient Conditions. Chemistry - A European Journal, 2019, 25, 1914-1917.	1.7	68
75	Unique nanosheet–nanowire structured CoMnFe layered triple hydroxide arrays as self-supporting electrodes for a high-efficiency oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 13130-13141.	5.2	67
76	NiS2 nanosheet array: A high-active bifunctional electrocatalyst for hydrazine oxidation and water reduction toward energy-efficient hydrogen production. Materials Today Energy, 2017, 3, 9-14.	2.5	63
77	Recent Advances in Nonprecious Metal Oxide Electrocatalysts and Photocatalysts for N ₂ Reduction Reaction under Ambient Condition. Small Science, 2021, 1, 2000069.	5.8	63
78	Electrocatalytic N ₂ Fixation over Hollow VO ₂ Microspheres at Ambient Conditions. ChemElectroChem, 2019, 6, 1014-1018.	1.7	59
79	Commercial indium-tin oxide glass: A catalyst electrode for efficient N2 reduction at ambient conditions. Chinese Journal of Catalysis, 2021, 42, 1024-1029.	6.9	59
80	TiB2 thin film enabled efficient NH3 electrosynthesis at ambient conditions. Materials Today Physics, 2021, 18, 100396.	2.9	55
81	Biomass-derived oxygen-doped hollow carbon microtubes for electrocatalytic N ₂ -to-NH ₃ fixation under ambient conditions. Chemical Communications, 2019, 55, 2684-2687.	2.2	54
82	Cu ₃ P nanoparticle-reduced graphene oxide hybrid: an efficient electrocatalyst to realize N ₂ -to-NH ₃ conversion under ambient conditions. Chemical Communications, 2020, 56, 9328-9331.	2.2	54
83	Enabling electrochemical conversion of N ₂ to NH ₃ under ambient conditions by a CoP ₃ nanoneedle array. Journal of Materials Chemistry A, 2020, 8, 17956-17959.	5.2	53
84	Hierarchically structured bimetallic electrocatalyst synthesized via template-directed fabrication MOF arrays for high-efficiency oxygen evolution reaction. Electrochimica Acta, 2019, 298, 525-532.	2.6	51
85	Hollow Bi ₂ MoO ₆ Sphere Effectively Catalyzes the Ambient Electroreduction of N ₂ to NH ₃ . ACS Sustainable Chemistry and Engineering, 2019, 7, 12692-12696.	3.2	49
86	Ambient electrochemical N ₂ -to-NH ₃ fixation enabled by Nb ₂ O ₅ nanowire array. Inorganic Chemistry Frontiers, 2019, 6, 423-427.	3.0	49
87	Ti ³⁺ self-doped TiO _{2â^x} nanowires for efficient electrocatalytic N ₂ reduction to NH ₃ . Chemical Communications, 2020, 56, 1074-1077.	2.2	49
88	Modulating Oxygen Vacancies of TiO ₂ Nanospheres by Mn-Doping to Boost Electrocatalytic N ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2021, 9, 1512-1517.	3.2	48
89	Electrocatalytic N2 reduction to NH3 with high Faradaic efficiency enabled by vanadium phosphide nanoparticle on V foil. Nano Research, 2020, 13, 2967-2972.	5.8	45
90	Activator-induced tuning of micromorphology and electrochemical properties in biomass carbonaceous materials derived from mushroom for lithium-sulfur batteries. Electrochimica Acta, 2017, 242, 146-158.	2.6	44

#	Article	IF	CITATIONS
91	Hierarchical CoTe ₂ Nanowire Array: An Effective Oxygen Evolution Catalyst in Alkaline Media. ACS Sustainable Chemistry and Engineering, 2018, 6, 4481-4485.	3.2	44
92	Greatly Improving Electrochemical N ₂ Reduction over TiO ₂ Nanoparticles by Iron Doping. Angewandte Chemie, 2019, 131, 18620-18624.	1.6	44
93	Enabling the electrocatalytic fixation of N ₂ to NH ₃ by C-doped TiO ₂ nanoparticles under ambient conditions. Nanoscale Advances, 2019, 1, 961-964.	2.2	44
94	An Eco-friendly Microorganism Method To Activate Biomass for Cathode Materials for High-Performance Lithium–Sulfur Batteries. Energy & Fuels, 2018, 32, 9997-10007.	2.5	43
95	Nitrogenâ€Doped Hierarchical Porous Carbon Framework Derived from Waste Pig Nails for Highâ€Performance Supercapacitors. ChemElectroChem, 2017, 4, 3181-3187.	1.7	41
96	La2O3 nanoplate: An efficient electrocatalyst for artificial N2 fixation to NH3 with excellent selectivity at ambient condition. Electrochimica Acta, 2019, 298, 106-111.	2.6	38
97	Ambient electrocatalytic N ₂ reduction to NH ₃ by metal fluorides. Journal of Materials Chemistry A, 2019, 7, 17761-17765.	5.2	37
98	La-doped TiO2 nanorods toward boosted electrocatalytic N2-to-NH3 conversion at ambient conditions. Chinese Journal of Catalysis, 2021, 42, 1755-1762.	6.9	35
99	Hierarchical nitrogen-doped porous carbon/carbon nanotube composites for high-performance supercapacitor. Superlattices and Microstructures, 2019, 130, 50-60.	1.4	34
100	Cu ₃ Mo ₂ O ₉ Nanosheet Array as a High-Efficiency Oxygen Evolution Electrode in Alkaline Solution. Inorganic Chemistry, 2018, 57, 1220-1225.	1.9	29
101	Cycling―and heatingâ€induced evolution of piezoelectric and ferroelectric properties of CuOâ€doped K _{0.5} Na _{0.5} NbO ₃ ceramic. Journal of the American Ceramic Society, 2019, 102, 351-361.	1.9	29
102	Defectâ€driven evolution of piezoelectric and ferroelectric properties in CuSb ₂ O ₆ â€doped K _{0.5} Na _{0.5} NbO ₃ leadâ€free ceramics. Journal of the American Ceramic Society, 2017, 100, 5610-5619.	1.9	27
103	Nanostructured Bromide-Derived Ag Film: An Efficient Electrocatalyst for N2Reduction to NH3under Ambient Conditions. Inorganic Chemistry, 2018, 57, 14692-14697.	1.9	27
104	Synergistic electrocatalytic N ₂ reduction using a PTCA nanorod–rGO hybrid. Journal of Materials Chemistry A, 2019, 7, 12446-12450.	5.2	27
105	Porous NiTe2 nanosheet array: An effective electrochemical sensor for glucose detection. Sensors and Actuators B: Chemical, 2018, 274, 427-432.	4.0	26
106	A comparative study of electrocatalytic oxidation of glucose on conductive Ni-MOF nanosheet arrays with different ligands. New Journal of Chemistry, 2020, 44, 17849-17853.	1.4	26
107	Honeycomb Carbon Nanofibers: A Superhydrophilic O ₂ â€Entrapping Electrocatalyst Enables Ultrahigh Mass Activity for the Twoâ€Electron Oxygen Reduction Reaction. Angewandte Chemie, 2021, 133, 10677-10681.	1.6	26
108	Metal–Organic Framework-Derived ZnSe- and Co _{0.85} Se-Filled Porous Nitrogen-Doped Carbon Nanocubes Interconnected by Reduced Graphene Oxide for Sodium-Ion Battery Anodes. Inorganic Chemistry, 2021, 60, 11693-11702.	1.9	24

#	Article	IF	CITATIONS
109	Vanadium Doped Nickel Phosphide Nanosheets Selfâ€Assembled Microspheres as a Highâ€Efficiency Oxygen Evolution Catalyst. ChemCatChem, 2020, 12, 917-925.	1.8	22
110	Oxygenâ€Doped Porous Carbon Nanosheet for Efficient N ₂ Fixation to NH ₃ at Ambient Conditions. ChemistrySelect, 2019, 4, 3547-3550.	0.7	21
111	Hydrangea flower-like nanostructure of dysprosium-doped Fe-MOF for highly efficient oxygen evolution reaction. Rare Metals, 2022, 41, 844-850.	3.6	17
112	Electrocatalysis enabled transformation of earth-abundant water, nitrogen and carbon dioxide for a sustainable future. Materials Advances, 2022, 3, 1359-1400.	2.6	17
113	Ambient electrochemical N ₂ reduction to NH ₃ under alkaline conditions enabled by a layered K ₂ Ti ₄ O ₉ nanobelt. Chemical Communications, 2019, 55, 7546-7549.	2.2	16
114	Structured Polyaniline: An Efficient and Durable Electrocatalyst for the Nitrogen Reduction Reaction in Acidic Media. ChemElectroChem, 2019, 6, 2215-2218.	1.7	16
115	Hornwort-like hollow porous MoO3/NiF2 heterogeneous nanowires as high-performance electrocatalysts for efficient water oxidation. Electrochimica Acta, 2021, 379, 138146.	2.6	16
116	Modulation of the Crystal Structure and Ultralong Life Span of a Na ₃ V ₂ (PO ₄) ₃ -Based Cathode for a High-Performance Sodium-Ion Battery by Niobium–Vanadium Substitution. Industrial & Engineering Chemistry Research. 2020, 59, 21039-21046.	1.8	15
117	In Situ Derived Bi Nanoparticles Confined in Carbon Rods as an Efficient Electrocatalyst for Ambient N ₂ Reduction to NH ₃ . Inorganic Chemistry, 2021, 60, 7584-7589.	1.9	15
118	3D shell-core structured NiCu-OH@Cu(OH)2 nanorod: A high-performance catalytic electrode for non-enzymatic glucose detection. Journal of Electroanalytical Chemistry, 2020, 876, 114477.	1.9	14
119	One‣tep Synthesis of a Coralâ€Like Cobalt Iron Oxyhydroxide Porous Nanoarray: An Efficient Catalyst for Oxygen Evolution Reactions. ChemPlusChem, 2019, 84, 1681-1687.	1.3	13
120	Highly Enhanced OER Performance by Er-Doped Fe-MOF Nanoarray at Large Current Densities. Nanomaterials, 2021, 11, 1847.	1.9	8
121	Mn-Doped NiFe Layered Double Hydroxide Nanosheets Decorated by Co(OH)2 Nanosheets: A 3-Dimensional Core–Shell Catalyst for Efficient Oxygen Evolution Reaction. Catalysis Letters, 2022, 152, 1719-1728.	1.4	5
122	Ag@TiO 2 as an Efficient Electrocatalyst for N 2 Fixation to NH 3 under Ambient Conditions. ChemistrySelect, 2021, 6, 5271-5274.	0.7	3
123	Communication—Fe-MOF Exhibits Higher Oxygen Evolution Ability by Electronic Modulation of Sodium Hypochlorite. Journal of the Electrochemical Society, 2021, 168, 126508.	1.3	3