Shengxiang Yang

List of Publications by Citations

Source: https://exaly.com/author-pdf/1063600/shengxiang-yang-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

271 8,667 47 86 g-index

304 11,067 5.6 7.07 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
271	A Grid-Based Evolutionary Algorithm for Many-Objective Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2013 , 17, 721-736	15.6	608
270	Shift-Based Density Estimation for Pareto-Based Algorithms in Many-Objective Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2014 , 18, 348-365	15.6	476
269	Evolutionary dynamic optimization: A survey of the state of the art. <i>Swarm and Evolutionary Computation</i> , 2012 , 6, 1-24	9.8	430
268	A survey of swarm intelligence for dynamic optimization: Algorithms and applications. <i>Swarm and Evolutionary Computation</i> , 2017 , 33, 1-17	9.8	300
267	A Clustering Particle Swarm Optimizer for Locating and Tracking Multiple Optima in Dynamic Environments. <i>IEEE Transactions on Evolutionary Computation</i> , 2010 , 14, 959-974	15.6	274
266	A self-learning particle swarm optimizer for global optimization problems. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2012 , 42, 627-46		235
265	Experimental study on population-based incremental learning algorithms for dynamic optimization problems. <i>Soft Computing</i> , 2005 , 9, 815-834	3.5	200
264	Population-Based Incremental Learning With Associative Memory for Dynamic Environments. <i>IEEE Transactions on Evolutionary Computation</i> , 2008 , 12, 542-561	15.6	197
263	A Strength Pareto Evolutionary Algorithm Based on Reference Direction for Multiobjective and Many-Objective Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2017 , 21, 329-346	15.6	196
262	A benchmark test suite for evolutionary many-objective optimization. <i>Complex & Intelligent Systems</i> , 2017 , 3, 67-81	7.1	187
261	A General Framework of Multipopulation Methods With Clustering in Undetectable Dynamic Environments. <i>IEEE Transactions on Evolutionary Computation</i> , 2012 , 16, 556-577	15.6	171
260	Genetic algorithms with memory- and elitism-based immigrants in dynamic environments. <i>Evolutionary Computation</i> , 2008 , 16, 385-416	4.3	161
259	Pareto or Non-Pareto: Bi-Criterion Evolution in Multiobjective Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2016 , 20, 645-665	15.6	157
258	Bi-goal evolution for many-objective optimization problems. <i>Artificial Intelligence</i> , 2015 , 228, 45-65	3.6	154
257	An Improved Multiobjective Optimization Evolutionary Algorithm Based on Decomposition for Complex Pareto Fronts. <i>IEEE Transactions on Cybernetics</i> , 2016 , 46, 421-37	10.2	140
256	A Steady-State and Generational Evolutionary Algorithm for Dynamic Multiobjective Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2017 , 21, 65-82	15.6	124
255	Diversity comparison of Pareto front approximations in many-objective optimization. <i>IEEE Transactions on Cybernetics</i> , 2014 , 44, 2568-84	10.2	122

(2018-2010)

254	Genetic Algorithms With Immigrants and Memory Schemes for Dynamic Shortest Path Routing Problems in Mobile Ad Hoc Networks. <i>IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews</i> , 2010 , 40, 52-63		109
253	Ant Colony Optimization With Local Search for Dynamic Traveling Salesman Problems. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 1743-1756	10.2	108
252	Particle swarm optimization with composite particles in dynamic environments. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2010 , 40, 1634-48		106
251	Ant colony optimization with immigrants schemes for the dynamic travelling salesman problem with traffic factors. <i>Applied Soft Computing Journal</i> , 2013 , 13, 4023-4037	7.5	99
250	A self-organizing random immigrants genetic algorithm for dynamic optimization problems. <i>Genetic Programming and Evolvable Machines</i> , 2007 , 8, 255-286	2	99
249	Evolutionary Dynamic Multiobjective Optimization: Benchmarks and Algorithm Comparisons. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 198-211	10.2	90
248	Memory-based immigrants for genetic algorithms in dynamic environments 2005,		90
247	. IEEE Transactions on Intelligent Transportation Systems, 2015 , 16, 2997-3016	6.1	89
246	A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems. <i>Soft Computing</i> , 2009 , 13, 763-780	3.5	89
245	Evolutionary algorithms with segment-based search for multiobjective optimization problems. <i>IEEE Transactions on Cybernetics</i> , 2014 , 44, 1295-313	10.2	77
244	A hybrid immigrants scheme for genetic algorithms in dynamic environments. <i>International Journal of Automation and Computing</i> , 2007 , 4, 243-254	3.5	77
243	A memetic particle swarm optimization algorithm for multimodal optimization problems. <i>Information Sciences</i> , 2012 , 197, 38-52	7.7	71
242	The effect of diversity maintenance on prediction in dynamic multi-objective optimization. <i>Applied Soft Computing Journal</i> , 2017 , 58, 631-647	7.5	70
241	A memetic ant colony optimization algorithm for the dynamic travelling salesman problem. <i>Soft Computing</i> , 2011 , 15, 1405-1425	3.5	67
240	A Similarity-Based Cooperative Co-Evolutionary Algorithm for Dynamic Interval Multiobjective Optimization Problems. <i>IEEE Transactions on Evolutionary Computation</i> , 2020 , 24, 142-156	15.6	66
239	An Adaptive Localized Decision Variable Analysis Approach to Large-Scale Multiobjective and Many-Objective Optimization. <i>IEEE Transactions on Cybernetics</i> , 2021 , PP,	10.2	66
238	Ant algorithms with immigrants schemes for the dynamic vehicle routing problem. <i>Information Sciences</i> , 2015 , 294, 456-477	7.7	64
237	Differential Evolution With a New Encoding Mechanism for Optimizing Wind Farm Layout. <i>IEEE Transactions on Industrial Informatics</i> , 2018 , 14, 1040-1054	11.9	62

236	Fast Multi-Swarm Optimization for Dynamic Optimization Problems 2008,		59
235	Multi-population methods in unconstrained continuous dynamic environments: The challenges. <i>Information Sciences</i> , 2015 , 296, 95-118	7.7	57
234	A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization. <i>Applied Soft Computing Journal</i> , 2017 , 61, 806-818	7.5	57
233	Genetic algorithms with immigrants schemes for dynamic multicast problems in mobile ad hoc networks. <i>Engineering Applications of Artificial Intelligence</i> , 2010 , 23, 806-819	7.2	57
232	Global and Local Surrogate-Assisted Differential Evolution for Expensive Constrained Optimization Problems With Inequality Constraints. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 1642-1656	10.2	57
231	Training neural networks with ant colony optimization algorithms for pattern classification. <i>Soft Computing</i> , 2015 , 19, 1511-1522	3.5	54
230	. IEEE Transactions on Evolutionary Computation, 2016 , 20, 590-605	15.6	52
229	Dynamic genetic algorithms for the dynamic load balanced clustering problem in mobile ad hoc networks. <i>Expert Systems With Applications</i> , 2013 , 40, 1381-1392	7.8	50
228	Genetic Algorithms With Guided and Local Search Strategies for University Course Timetabling. <i>IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews</i> , 2011 , 41, 93-106		50
227	A Generalized Approach to Construct Benchmark Problems for Dynamic Optimization. <i>Lecture Notes in Computer Science</i> , 2008 , 391-400	0.9	50
226	A clustering particle swarm optimizer for dynamic optimization 2009,		49
225	Scalarizing Functions in Decomposition-Based Multiobjective Evolutionary Algorithms. <i>IEEE Transactions on Evolutionary Computation</i> , 2018 , 22, 296-313	15.6	48
224	A Two-Phase Differential Evolution for Uniform Designs in Constrained Experimental Domains. <i>IEEE Transactions on Evolutionary Computation</i> , 2017 , 21, 665-680	15.6	47
223	Associative Memory Scheme for Genetic Algorithms in Dynamic Environments. <i>Lecture Notes in Computer Science</i> , 2006 , 788-799	0.9	47
222	An adaptive multi-swarm optimizer for dynamic optimization problems. <i>Evolutionary Computation</i> , 2014 , 22, 559-94	4.3	46
221	Genetic Algorithms with Elitism-Based Immigrants for Changing Optimization Problems 2007 , 627-636		43
220	A Weighted Biobjective Transformation Technique for Locating Multiple Optimal Solutions of Nonlinear Equation Systems. <i>IEEE Transactions on Evolutionary Computation</i> , 2017 , 21, 697-713	15.6	41
219	A new adaptive neural network and heuristics hybrid approach for job-shop scheduling. <i>Computers and Operations Research</i> , 2001 , 28, 955-971	4.6	41

(2013-2011)

218	Joint QoS multicast routing and channel assignment in multiradio multichannel wireless mesh networks using intelligent computational methods. <i>Applied Soft Computing Journal</i> , 2011 , 11, 1953-1964	4 7·5	40	
217	Improving the multiobjective evolutionary algorithm based on decomposition with new penalty schemes. <i>Soft Computing</i> , 2017 , 21, 4677-4691	3.5	38	
216	Ant Colony Optimization for Simulated Dynamic Multi-Objective Railway Junction Rescheduling. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2017 , 18, 2980-2992	6.1	38	
215	A hybrid genetic algorithm and tabu search approach for post enrolment course timetabling. <i>Journal of Scheduling</i> , 2011 , 14, 617-637	1.6	38	
214	Multiline Distance Minimization: A Visualized Many-Objective Test Problem Suite. <i>IEEE Transactions on Evolutionary Computation</i> , 2018 , 22, 61-78	15.6	37	
213	A Comparative Study on Evolutionary Algorithms for Many-Objective Optimization. <i>Lecture Notes in Computer Science</i> , 2013 , 261-275	0.9	37	
212	ETEA: a Euclidean minimum spanning tree-based evolutionary algorithm for multi-objective optimization. <i>Evolutionary Computation</i> , 2014 , 22, 189-230	4.3	35	
211	Constraint satisfaction adaptive neural network and heuristics combined approaches for generalized job-shop scheduling. <i>IEEE Transactions on Neural Networks</i> , 2000 , 11, 474-86		35	
210	Ant Colony Stream Clustering: A Fast Density Clustering Algorithm for Dynamic Data Streams. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 2215-2228	10.2	34	
209	Explicit Memory Schemes for Evolutionary Algorithms in Dynamic Environments. <i>Studies in Computational Intelligence</i> , 2007 , 3-28	0.8	34	
208	Non-stationary problem optimization using the primal-dual genetic algorithm		33	
207	An improved particle swarm optimization algorithm for dynamic job shop scheduling problems with random job arrivals. <i>Swarm and Evolutionary Computation</i> , 2019 , 51, 100594	9.8	32	
206	Triggered Memory-Based Swarm Optimization in Dynamic Environments 2007, 637-646		32	
205	Learning behavior in abstract memory schemes for dynamic optimization problems. <i>Soft Computing</i> , 2009 , 13, 1163-1173	3.5	31	
204	Hybrid of memory and prediction strategies for dynamic multiobjective optimization. <i>Information Sciences</i> , 2019 , 485, 200-218	7.7	30	
203	A hybrid evolutionary multiobjective optimization strategy for the dynamic power supply problem in magnesia grain manufacturing. <i>Applied Soft Computing Journal</i> , 2013 , 13, 2960-2969	7.5	30	
202	Population-based incremental learning with memory scheme for changing environments 2005,		30	
201	Fourth party logistics routing problem with fuzzy duration time. <i>International Journal of Production Economics</i> , 2013 , 145, 107-116	9.3	29	

200	A particle swarm optimization based memetic algorithm for dynamic optimization problems. <i>Natural Computing</i> , 2010 , 9, 703-725	1.3	29
199	A memetic particle swarm optimisation algorithm for dynamic multi-modal optimisation problems. <i>International Journal of Systems Science</i> , 2012 , 43, 1268-1283	2.3	25
198	An adaptive learning particle swarm optimizer for function optimization 2009,		25
197	A comparative study of constraint-handling techniques in evolutionary constrained multiobjective optimization 2016 ,		25
196	Ant Colony Optimization with Immigrants Schemes in Dynamic Environments 2010 , 371-380		24
195	A Memetic Algorithm for the University Course Timetabling Problem 2008,		24
194	A predictive strategy based on special points for evolutionary dynamic multi-objective optimization. <i>Soft Computing</i> , 2019 , 23, 3723-3739	3.5	24
193	Novel Prediction Strategies for Dynamic Multiobjective Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2020 , 24, 260-274	15.6	24
192	A close neighbor mobility method using particle swarm optimizer for solving multimodal optimization problems. <i>Information Sciences</i> , 2020 , 519, 332-347	7.7	23
191	A Performance Comparison Indicator for Pareto Front Approximations in Many-Objective Optimization 2015 ,		21
190	Environment identification-based memory scheme for estimation of distribution algorithms in dynamic environments. <i>Soft Computing</i> , 2011 , 15, 311-326	3.5	21
189	Memory-Based Immigrants for Ant Colony Optimization in Changing Environments. <i>Lecture Notes in Computer Science</i> , 2011 , 324-333	0.9	21
188	An Adaptive Framework to Tune the Coordinate Systems in Nature-Inspired Optimization Algorithms. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 1403-1416	10.2	21
187	Continuous dynamic problem generators for evolutionary algorithms 2007,		20
186	A Novel Evolutionary Algorithm for Dynamic Constrained Multiobjective Optimization Problems. <i>IEEE Transactions on Evolutionary Computation</i> , 2020 , 24, 792-806	15.6	20
185	Learning to Optimize: Reference Vector Reinforcement Learning Adaption to Constrained Many-Objective Optimization of Industrial Copper Burdening System. <i>IEEE Transactions on Cybernetics</i> , 2021 , PP,	10.2	20
184	A many-objective evolutionary algorithm based on rotated grid. <i>Applied Soft Computing Journal</i> , 2018 , 67, 596-609	7·5	19
183	A pareto-based evolutionary algorithm using decomposition and truncation for dynamic multi-objective optimization. <i>Applied Soft Computing Journal</i> , 2019 , 85, 105673	7.5	19

(2014-2013)

182	Fourth party logistics routing problem model with fuzzy duration time and cost discount. Knowledge-Based Systems, 2013 , 50, 14-24	7.3	19	
181	Hyper-learning for population-based incremental learning in dynamic environments 2009,		19	
180	Differential evolution with a two-stage optimization mechanism for numerical optimization 2016,		19	
179	An adaptive hybrid evolutionary immune multi-objective algorithm based on uniform distribution selection. <i>Information Sciences</i> , 2020 , 512, 446-470	7.7	19	
178	Ant colony optimization with memory-based immigrants for the dynamic vehicle routing problem 2012 ,		18	
177	Hybrid meta-heuristic algorithms for independent job scheduling in grid computing. <i>Applied Soft Computing Journal</i> , 2018 , 72, 498-517	7.5	18	
176	Force-imitated particle swarm optimization using the near-neighbor effect for locating multiple optima. <i>Information Sciences</i> , 2012 , 182, 139-155	7.7	17	
175	A comparative study of immune system based genetic algorithms in dynamic environments 2006,		17	
174	Multi-population Genetic Algorithms with Immigrants Scheme for Dynamic Shortest Path Routing Problems in Mobile Ad Hoc Networks. <i>Lecture Notes in Computer Science</i> , 2010 , 562-571	0.9	17	
173	A decomposition-based multiobjective evolutionary algorithm with angle-based adaptive penalty. <i>Applied Soft Computing Journal</i> , 2019 , 74, 190-205	7.5	17	
172	Biology migration algorithm: a new nature-inspired heuristic methodology for global optimization. <i>Soft Computing</i> , 2019 , 23, 7333-7358	3.5	16	
171	Multi-colony ant algorithms for the dynamic travelling salesman problem 2014 ,		16	
170	Adaptive primal-dual genetic algorithms in dynamic environments. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2009 , 39, 1348-61		16	
169	Compound Particle Swarm Optimization in Dynamic Environments. <i>Lecture Notes in Computer Science</i> , 2008 , 616-625	0.9	16	
168	Memory Based on Abstraction for Dynamic Fitness Functions. <i>Lecture Notes in Computer Science</i> , 2008 , 596-605	0.9	16	
167	A Benchmark Generator for Dynamic Permutation-Encoded Problems. <i>Lecture Notes in Computer Science</i> , 2012 , 508-517	0.9	16	
166	A test problem for visual investigation of high-dimensional multi-objective search 2014,		15	
165	A framework of scalable dynamic test problems for dynamic multi-objective optimization 2014 ,	_	15	

164	Adapting the Pheromone Evaporation Rate in Dynamic Routing Problems. <i>Lecture Notes in Computer Science</i> , 2013 , 606-615	0.9	15
163	A Pareto-based many-objective evolutionary algorithm using space partitioning selection and angle-based truncation. <i>Information Sciences</i> , 2019 , 478, 186-207	7.7	15
162	A dynamic multiobjective evolutionary algorithm based on a dynamic evolutionary environment model. <i>Swarm and Evolutionary Computation</i> , 2019 , 44, 247-259	9.8	15
161	. IEEE Computational Intelligence Magazine, 2020 , 15, 52-63	5.6	14
160	Stability-aware multi-metric clustering in mobile ad hoc networks with group mobility. <i>Wireless Communications and Mobile Computing</i> , 2009 , 9, 759-771	1.9	14
159	A multipopulation parallel genetic simulated annealing-based QoS routing and wavelength assignment integration algorithm for multicast in optical networks. <i>Applied Soft Computing Journal</i> , 2009 , 9, 677-684	7.5	14
158	An improved constraint satisfaction adaptive neural network for job-shop scheduling. <i>Journal of Scheduling</i> , 2010 , 13, 17-38	1.6	14
157	A knee-point-based evolutionary algorithm using weighted subpopulation for many-objective optimization. <i>Swarm and Evolutionary Computation</i> , 2019 , 47, 33-43	9.8	14
156	A Scalable Test Suite for Continuous Dynamic Multiobjective Optimization. <i>IEEE Transactions on Cybernetics</i> , 2020 , 50, 2814-2826	10.2	14
155	Correcting data imbalance for semi-supervised COVID-19 detection using X-ray chest images. <i>Applied Soft Computing Journal</i> , 2021 , 111, 107692	7.5	14
154	Ant colony optimization with immigrants schemes for the dynamic railway junction rescheduling problem with multiple delays. <i>Soft Computing</i> , 2016 , 20, 2951-2966	3.5	13
153	A Multiobjective Evolutionary Algorithm Based on Coordinate Transformation. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 2732-2743	10.2	13
152	Handling Constrained Many-Objective Optimization Problems via Problem Transformation. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 4834-4847	10.2	13
151	An Ant Colony Optimization Based Memetic Algorithm for the Dynamic Travelling Salesman Problem 2015 ,		12
150	Convergence Versus Diversity in Multiobjective Optimization. <i>Lecture Notes in Computer Science</i> , 2016 , 984-993	0.9	12
149	Analysis of fitness landscape modifications in evolutionary dynamic optimization. <i>Information Sciences</i> , 2014 , 282, 214-236	7.7	12
148	Evolutionary Dynamic Optimization: Test and Evaluation Environments. <i>Studies in Computational Intelligence</i> , 2013 , 3-37	0.8	12
147	An adaptation reference-point-based multiobjective evolutionary algorithm. <i>Information Sciences</i> , 2019 , 488, 41-57	7.7	11

146	Evolutionary dynamic constrained optimization: Test suite construction and algorithm comparisons. <i>Swarm and Evolutionary Computation</i> , 2019 , 50, 100559	9.8	11
145	Ant colony optimization with self-adaptive evaporation rate in dynamic environments 2014,		11
144	IMMIGRANTS-ENHANCED MULTI-POPULATION GENETIC ALGORITHMS FOR DYNAMIC SHORTEST PATH ROUTING PROBLEMS IN MOBILE AD HOC NETWORKS. <i>Applied Artificial Intelligence</i> , 2012 , 26, 673	3 -69 5	11
143	Improving Uncertainty Estimation With Semi-Supervised Deep Learning for COVID-19 Detection Using Chest X-Ray Images. <i>IEEE Access</i> , 2021 , 9, 85442-85454	3.5	11
142	Multifurnace Optimization in Electric Smelting Plants by Load Scheduling and Control. <i>IEEE Transactions on Automation Science and Engineering</i> , 2014 , 11, 850-862	4.9	10
141	Evolving neural networks using ant colony optimization with pheromone trail limits 2013,		10
140	An adaptive local search algorithm for real-valued dynamic optimization 2015,		10
139	Adaptive neighborhood selection for many-objective optimization problems. <i>Applied Soft Computing Journal</i> , 2018 , 64, 186-198	7.5	10
138	A dynamic multi-objective evolutionary algorithm based on intensity of environmental change. <i>Information Sciences</i> , 2020 , 523, 49-62	7.7	9
137	Evolutionary Dynamic Optimization: Methodologies. <i>Studies in Computational Intelligence</i> , 2013 , 39-64	0.8	9
136	Genetic algorithms with elitism-based immigrants for dynamic load balanced clustering problem in mobile ad hoc networks 2011 ,		9
135	Ant Colony Optimization with Immigrants Schemes for the Dynamic Vehicle Routing Problem. <i>Lecture Notes in Computer Science</i> , 2012 , 519-528	0.9	9
134	An Analysis of the XOR Dynamic Problem Generator Based on the Dynamical System 2010 , 274-283		9
133	. IEEE Access, 2019 , 7, 127128-127140	3.5	8
132	Genetic algorithms with adaptive immigrants for dynamic environments 2013,		8
131	Use of the q-Gaussian mutation in evolutionary algorithms. <i>Soft Computing</i> , 2011 , 15, 1523-1549	3.5	8
130	Adaptive mutation with fitness and allele distribution correlation for genetic algorithms 2006,		8
129	Constructing dynamic test environments for genetic algorithms based on problem difficulty		8

128	Joint Multicast Routing and Channel Assignment in Multiradio Multichannel Wireless Mesh Networks Using Simulated Annealing. <i>Lecture Notes in Computer Science</i> , 2008 , 370-380	0.9	8
127	Energy Consumption Forecasting for the Nonferrous Metallurgy Industry Using Hybrid Support Vector Regression with an Adaptive State Transition Algorithm. <i>Cognitive Computation</i> , 2020 , 12, 357-36	6 8 .4	8
126	. IEEE Transactions on Big Data, 2019 , 1-1	3.2	7
125	A green intelligent routing algorithm supporting flexible QoS for many-to-many multicast. <i>Computer Networks</i> , 2017 , 126, 229-245	5.4	7
124	Interactive and non-interactive hybrid immigrants schemes for ant algorithms in dynamic environments 2014 ,		7
123	A Directed Mutation Operator for Real Coded Genetic Algorithms. <i>Lecture Notes in Computer Science</i> , 2010 , 491-500	0.9	7
122	Particle Filter with Swarm Move for Optimization. <i>Lecture Notes in Computer Science</i> , 2008 , 909-918	0.9	7
121	Genetic Algorithm for Independent Job Scheduling in Grid Computing. <i>Mendel</i> , 2019 , 23, 65-72	1.4	7
120	Genetic Algorithms with Self-Organizing Behaviour in Dynamic Environments. <i>Studies in Computational Intelligence</i> , 2007 , 105-127	0.8	7
119	A novel discrete bat algorithm for heterogeneous redundancy allocation of multi-state systems subject to probabilistic common-cause failure. <i>Reliability Engineering and System Safety</i> , 2021 , 208, 1073	338	7
118	A dual-population algorithm based on alternative evolution and degeneration for solving constrained multi-objective optimization problems. <i>Information Sciences</i> , 2021 , 579, 89-102	7.7	7
117	Evolutionary Computation for Dynamic Optimization Problems 2015,		6
116	A Dynamic Multiobjective Evolutionary Algorithm Based on Decision Variable Classification. <i>IEEE Transactions on Cybernetics</i> , 2020 ,	10.2	6
115	Dynamic Stream Clustering Using Ants. Advances in Intelligent Systems and Computing, 2017, 495-508	0.4	6
114	In silico discovery of significant pathways in colorectal cancer metastasis using a two-stage optimisation approach. <i>IET Systems Biology</i> , 2015 , 9, 294-302	1.4	6
113	A benchmark generator for dynamic multi-objective optimization problems 2014 ,		6
112	An Immigrants Scheme Based on Environmental Information for Ant Colony Optimization for the Dynamic Travelling Salesman Problem. <i>Lecture Notes in Computer Science</i> , 2012 , 1-12	0.9	6
111	Joint Multicast Routing and Channel Assignment in Multiradio Multichannel Wireless Mesh Networks Using Tabu Search 2009 ,		6

(2014-2009)

110	An Immune System Based Genetic Algorithm Using Permutation-Based Dualism for Dynamic Traveling Salesman Problems. <i>Lecture Notes in Computer Science</i> , 2009 , 725-734	0.9	6
109	A Guided Search Non-dominated Sorting Genetic Algorithm for the Multi-Objective University Course Timetabling Problem. <i>Lecture Notes in Computer Science</i> , 2011 , 1-13	0.9	6
108	Ant Colony Optimization Algorithms with Immigrants Schemes for the Dynamic Travelling Salesman Problem. <i>Studies in Computational Intelligence</i> , 2013 , 317-341	0.8	6
107	AREA: An adaptive reference-set based evolutionary algorithm for multiobjective optimisation. <i>Information Sciences</i> , 2020 , 515, 365-387	7.7	6
106	Improving Uncertainty Estimations for Mammogram Classification using Semi-Supervised Learning 2021 ,		6
105	Accelerating differential evolution based on a subset-to-subset survivor selection operator. <i>Soft Computing</i> , 2019 , 23, 4113-4130	3.5	6
104	A prediction strategy based on decision variable analysis for dynamic Multi-objective Optimization. <i>Swarm and Evolutionary Computation</i> , 2021 , 60, 100786	9.8	6
103	Dealing with Scarce Labelled Data: Semi-supervised Deep Learning with Mix Match for Covid-19 Detection Using Chest X-ray Images 2021 ,		6
102	A two-archive algorithm with decomposition and fitness allocation for multi-modal multi-objective optimization. <i>Information Sciences</i> , 2021 , 574, 413-430	7.7	6
101	Ra-dominance: A new dominance relationship for preference-based evolutionary multiobjective optimization. <i>Applied Soft Computing Journal</i> , 2020 , 90, 106192	7.5	5
100	Multi-Population Methods with Adaptive Mutation for Multi-Modal Optimization Problems. <i>International Journal on Soft Computing Artificial Intelligence and Applications</i> , 2013 , 2, 1-19	1.6	5
99	Memory-enhanced univariate marginal distribution algorithms for dynamic optimization problems		5
98	A Hybrid Approach to Piecewise Modelling of Biochemical Systems. <i>Lecture Notes in Computer Science</i> , 2012 , 519-528	0.9	5
97	IPESA-II: Improved Pareto Envelope-Based Selection Algorithm II. <i>Lecture Notes in Computer Science</i> , 2013 , 143-155	0.9	5
96	Genetic Algorithms for Dynamic Routing Problems in Mobile Ad Hoc Networks. <i>Studies in Computational Intelligence</i> , 2013 , 343-375	0.8	5
95	Multiview Subspace Clustering Using Low-Rank Representation. <i>IEEE Transactions on Cybernetics</i> , 2021 , PP,	10.2	5
94	Population-Based Incremental Learning with Immigrants Schemes in Changing Environments 2015,		4
93	2014,		4

92	Maintaining diversity by clustering in dynamic environments 2012,		4
91	Genetic algorithms with elitism-based immigrants for dynamic shortest path problem in mobile ad hoc networks 2009 ,		4
90	A hybrid evolutionary multiobjective approach for the dynamic component selection problem 2011 ,		4
89	Dominance learning in diploid genetic algorithms for dynamic optimization problems 2006,		4
88	Self-adaptation of mutation distribution in evolutionary algorithms 2007,		4
87	Genetic algorithms with self-organized criticality for dynamic optimization problems		4
86	An Island Based Hybrid Evolutionary Algorithm for Optimization. <i>Lecture Notes in Computer Science</i> , 2008 , 180-189	0.9	4
85	Analyzing Evolutionary Algorithms for Dynamic Optimization Problems Based on the Dynamical Systems Approach. <i>Studies in Computational Intelligence</i> , 2013 , 241-267	0.8	4
84	Solving dynamic multi-objective problems with an evolutionary multi-directional search approach. <i>Knowledge-Based Systems</i> , 2020 , 194, 105175	7.3	4
83	Constrained Operational Optimization of a Distillation Unit in Refineries With Varying Feedstock Properties. <i>IEEE Transactions on Control Systems Technology</i> , 2020 , 28, 2752-2761	4.8	4
82	A Performance Indicator for Reference-Point-Based Multiobjective Evolutionary Optimization 2018 ,		4
81	Evolutionary computation for dynamic optimization problems 2013,		3
80	Towards Knowledge Driven Decision Support for Personalized Home-Based Self-Management of Chronic Diseases 2015 ,		3
79	A Comparative Study on Particle Swarm Optimization in Dynamic Environments. <i>Studies in Computational Intelligence</i> , 2013 , 109-136	0.8	3
78	Adaptive learning particle swarm optimizer-II for global optimization 2010,		3
77	Ant colony optimization with direct communication for the traveling salesman problem 2010,		3
76	QoS multicast tree construction in IP/DWDM optical internet by bio-inspired algorithms. <i>Journal of Network and Computer Applications</i> , 2010 , 33, 512-522	7.9	3
75	Evolutionary programming with q-Gaussian mutation for dynamic optimization problems 2008,		3

74	On the Design of Diploid Genetic Algorithms for Problem Optimization in Dynamic Environments		3
73	Dynamic Optimization Using Analytic and Evolutionary Approaches: A Comparative Review. <i>Intelligent Systems Reference Library</i> , 2013 , 1-28	0.8	3
72	Dynamic Vehicle Routing: A Memetic Ant Colony Optimization Approach. <i>Studies in Computational Intelligence</i> , 2013 , 283-301	0.8	3
71	An infeasible solutions diversity maintenance epsilon constraint handling method for evolutionary constrained multiobjective optimization. <i>Soft Computing</i> , 2021 , 25, 8051-8062	3.5	3
70	2016,		3
69	An adaptive penalty-based boundary intersection approach for multiobjective evolutionary algorithm based on decomposition 2016 ,		3
68	Multiobjective optimization of the production process for ground granulated blast furnace slags. <i>Soft Computing</i> , 2018 , 22, 8177-8186	3.5	3
67	An Evolutionary Dynamic Multi-objective Optimization Algorithm Based on Center-point Prediction and Sub-population Autonomous Guidance 2018 ,		3
66	Less detectable environmental changes in dynamic multiobjective optimisation 2018,		3
65	An Empirical Study of Dynamic Triobjective Optimisation Problems 2018,		3
64	Evolutionary Multiobjective Clustering Algorithms With Ensemble for Patient Stratification. <i>IEEE Transactions on Cybernetics</i> , 2021 , PP,	10.2	3
63	Dealing with distribution mismatch in semi-supervised deep learning for COVID-19 detection using chest X-ray images: A novel approach using feature densities <i>Applied Soft Computing Journal</i> , 2022 , 123, 108983	7.5	3
62	Meta-Heuristically Seeded Genetic Algorithm for Independent Job Scheduling in Grid Computing. <i>Lecture Notes in Computer Science</i> , 2017 , 177-189	0.9	2
61	Finding Multi-Density Clusters in non-stationary data streams using an Ant Colony with adaptive parameters 2017 ,		2
60	Hyper-mutation Based Genetic Algorithms for Dynamic Multicast Routing Problem in Mobile Ad Hoc Networks 2012 ,		2
59	Evolution Strategies with q-Gaussian Mutation for Dynamic Optimization Problems 2010,		2
58	Hyper-Selection in Dynamic Environments 2008,		2
57	An Improved Adaptive Neural Network for Job-Shop Scheduling		2

56	Applying Ant Colony Optimization to Dynamic Binary-Encoded Problems. <i>Lecture Notes in Computer Science</i> , 2015 , 845-856	0.9	2
55	Agent Based Evolutionary Dynamic Optimization. Adaptation, Learning, and Optimization, 2010, 97-116	0.7	2
54	Direct Memory Schemes for Population-Based Incremental Learning in Cyclically Changing Environments. <i>Lecture Notes in Computer Science</i> , 2016 , 233-247	0.9	2
53	A New Crossover Mechanism for Genetic Algorithms for Steiner Tree Optimization. <i>IEEE Transactions on Cybernetics</i> , 2020 , PP,	10.2	2
52	A First Glance to the Quality Assessment of Dental Photostimulable Phosphor Plates with Deep Learning 2020 ,		2
51	Particle Swarm Optimisation for Scheduling Electric Vehicles with Microgrids 2020 ,		2
50	Evolutionary Approach to Multiparty Multiobjective Optimization Problems with Common Pareto Optimal Solutions 2020 ,		2
49	A modular neural network-based population prediction strategy for evolutionary dynamic multi-objective optimization. <i>Swarm and Evolutionary Computation</i> , 2021 , 62, 100829	9.8	2
48	A feedback-based prediction strategy for dynamic multi-objective evolutionary optimization. <i>Expert Systems With Applications</i> , 2021 , 172, 114594	7.8	2
47	A framework for inducing artificial changes in optimization problems. <i>Information Sciences</i> , 2019 , 485, 486-504	7.7	2
46	A many-objective evolutionary algorithm based on rotation and decomposition. <i>Swarm and Evolutionary Computation</i> , 2021 , 60, 100775	9.8	2
45	A many-objective algorithm based on staged coordination selection. <i>Swarm and Evolutionary Computation</i> , 2021 , 60, 100737	9.8	2
44	A Dynamic Multi-objective Particle Swarm Optimization Algorithm Based on Adversarial Decomposition and Neighborhood Evolution. <i>Swarm and Evolutionary Computation</i> , 2021 , 100987	9.8	2
43	Dynamic multi-objective optimization algorithm based decomposition and preference. <i>Information Sciences</i> , 2021 , 571, 175-190	7.7	2
42	Model-Based Rate-Distortion Optimized Video-Based Point Cloud Compression with Differential Evolution. <i>Lecture Notes in Computer Science</i> , 2021 , 735-747	0.9	2
41	Adaptive Mutation Using Statistics Mechanism for Genetic Algorithms 2004 , 19-32		2
40	A clique-based online algorithm for constructing optical orthogonal codes. <i>Applied Soft Computing Journal</i> , 2016 , 47, 21-32	7·5	1
39	Pheromone modification strategy for the dynamic travelling salesman problem with weight changes 2017 ,		1

38	Ant colony optimization for scheduling walking beam reheating furnaces 2014,		1
37	Elitism-based immigrants for ant colony optimization in dynamic environments: Adapting the replacement rate 2014 ,		1
36	Improved genetic algorithm for magnetic material two-stage multi-product production scheduling: A case study 2012 ,		1
35	Learning in Abstract Memory Schemes for Dynamic Optimization 2008,		1
34	Job-Shop Scheduling with an Adaptive Neural Network and Local Search Hybrid Approach 2006,		1
33	Constraint satisfaction adaptive neural network and efficient heuristics for job-shop scheduling. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 1999 , 32, 4882-4887		1
32	Dynamic Transfer Reference Point Oriented MOEA/D Involving Local Objective-Space Knowledge. <i>IEEE Transactions on Evolutionary Computation</i> , 2022 , 1-1	15.6	1
31	An improved multiobjective optimization evolutionary algorithm based on decomposition with hybrid penalty scheme 2020 ,		1
30	Analysis and multi-objective optimization of slag powder process. <i>Applied Soft Computing Journal</i> , 2020 , 96, 106587	7.5	1
29	Adaptive Multipopulation Evolutionary Algorithm for Contamination Source Identification in Water Distribution Systems. <i>Journal of Water Resources Planning and Management - ASCE</i> , 2021 , 147, 04021014	4 ^{2.8}	1
28	A decision variable classification-based cooperative coevolutionary algorithm for dynamic multiobjective optimization. <i>Information Sciences</i> , 2021 , 560, 307-330	7.7	1
27	Railway platform reallocation after dynamic perturbations using ant colony optimisation 2016,		1
26	Evolutionary dynamic optimisation of airport security lane schedules 2016,		1
25	Achievement scalarizing function sorting for strength Pareto evolutionary algorithm in many-objective optimization. <i>Neural Computing and Applications</i> , 2021 , 33, 6369-6388	4.8	1
24	A Loosely Coupled Hybrid Meta-Heuristic Algorithm for the Static Independent Task Scheduling Problem in Grid Computing 2018 ,		1
23	Niche-based and angle-based selection strategies for many-objective evolutionary optimization. <i>Information Sciences</i> , 2021 , 571, 133-153	7.7	1
22	A many-objective evolutionary algorithm based on dominance and decomposition with reference point adaptation. <i>Knowledge-Based Systems</i> , 2021 , 231, 107392	7.3	1
21	A real use case of semi-supervised learning for mammogram classification in a local clinic of Costa Rica <i>Medical and Biological Engineering and Computing</i> , 2022 , 60, 1159	3.1	1

20	A Level-based Multi-strategy Learning Swarm Optimizer for Large-Scale Multi-objective Optimization. <i>Swarm and Evolutionary Computation</i> , 2022 , 101100	9.8	1
19	Combining a Hybrid Prediction Strategy and a Mutation Strategy for Dynamic Multiobjective Optimization. <i>Swarm and Evolutionary Computation</i> , 2022 , 70, 101041	9.8	O
18	A multiobjective state transition algorithm based on modified decomposition method. <i>Applied Soft Computing Journal</i> , 2022 , 119, 108553	7.5	0
17	Classification in Dynamic Data Streams with a Scarcity of Labels. <i>IEEE Transactions on Knowledge</i> and Data Engineering, 2021 , 1-1	4.2	O
16	PopDMMO: A general framework of population-based stochastic search algorithms for dynamic multimodal optimization. <i>Swarm and Evolutionary Computation</i> , 2022 , 68, 101011	9.8	O
15	Dynamics in the Multi-objective Subset Sum: Analysing the Behavior of Population Based Algorithms. <i>Studies in Computational Intelligence</i> , 2013 , 299-313	0.8	O
14	Evolutionary Algorithms for the Multiple Unmanned Aerial Combat Vehicles Anti-ground Attack Problem in Dynamic Environments. <i>Studies in Computational Intelligence</i> , 2013 , 403-431	0.8	0
13	A random benchmark suite and a new reaction strategy in dynamic multiobjective optimization. <i>Swarm and Evolutionary Computation</i> , 2021 , 63, 100867	9.8	O
12	Solving dynamic multi-objective problems with a new prediction-based optimization algorithm. <i>PLoS ONE</i> , 2021 , 16, e0254839	3.7	O
11	A constrained multi-objective evolutionary strategy based on population state detection. <i>Swarm and Evolutionary Computation</i> , 2021 , 68, 100978	9.8	O
10	Multiobjective Deep Clustering and Its Applications in Single-cell RNA-seq Data. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2021 , 1-12	7.3	0
9	An Angle-Based Bi-Objective Optimization Algorithm for Redundancy Allocation in Presence of Interval Uncertainty. <i>IEEE Transactions on Automation Science and Engineering</i> , 2022 , 1-14	4.9	O
8	Self-adaptation of mutation distribution in evolution strategies for dynamic optimization problems. <i>International Journal of Hybrid Intelligent Systems</i> , 2011 , 8, 155-168	0.9	
7	PRIMAL-DUAL GENETIC ALGORITHMS FOR ROYAL ROAD FUNCTIONS. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2002 , 35, 373-378		
6	Robustness and Evolutionary Dynamic Optimisation of Airport Security Schedules. <i>Advances in Intelligent Systems and Computing</i> , 2019 , 27-39	0.4	
5	A Novel Multi-objective Evolutionary Algorithm Based on Space Partitioning. <i>Communications in Computer and Information Science</i> , 2020 , 127-142	0.3	
4	Artificially Inducing Environmental Changes in Evolutionary Dynamic Optimization. <i>Lecture Notes in Computer Science</i> , 2016 , 225-236	0.9	
3	Pre-scheduled Colony Size Variation in Dynamic Environments. <i>Lecture Notes in Computer Science</i> , 2017 , 128-139	0.9	

LIST OF PUBLICATIONS

2	Memetic Algorithms for Dynamic Optimization Problems. <i>Studies in Computational Intelligence</i> , 2013 , 137-170	0.8
1	Dynamic Multi-objective Optimization for Multi-objective Vehicle Routing Problem with Real-time Traffic Conditions. <i>Studies in Systems, Decision and Control</i> , 2021 , 289-307	0.8