
M Andrew Nesbit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1063565/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gene editing for the cornea. , 2022, , 81-100.		Ο
2	User experience of home-based AbC-19 SARS-CoV-2 antibody rapid lateral flow immunoassay test. Scientific Reports, 2022, 12, 1173.	1.6	3
3	Cross reactivity of spike glycoprotein induced antibody against Delta and Omicron variants before and after third SARS-CoV-2 vaccine dose in healthy and immunocompromised individuals. Journal of Infection, 2022, 84, 579-613.	1.7	21
4	lgG antibody production and persistence to 6Âmonths following SARS-CoV-2 vaccination: A Northern Ireland observational study. Vaccine, 2022, 40, 2535-2539.	1.7	9
5	Successful Proof-of-Concept for Topical Delivery of Novel Peptide ALM201 with Potential Usefulness for Treating Neovascular Eye Disorders. Ophthalmology Science, 2022, 2, 100150.	1.0	1
6	Evaluation of the IgG antibody response to SARS CoV-2 infection and performance of a lateral flow immunoassay: cross-sectional and longitudinal analysis over 11 months. BMJ Open, 2021, 11, e048142.	0.8	17
7	Mutation-Independent Allele-Specific Editing by CRISPR-Cas9, a Novel Approach to Treat Autosomal Dominant Disease. Molecular Therapy, 2020, 28, 1846-1857.	3.7	13
8	Protein Analysis of the TGFBI ^{R124H} Mouse Model Gives Insight into Phenotype Development of Granular Corneal Dystrophy. Proteomics - Clinical Applications, 2020, 14, e1900072.	0.8	2
9	Topical siRNA delivery to the cornea and anterior eye by hybrid silicon-lipid nanoparticles. Journal of Controlled Release, 2020, 326, 192-202.	4.8	28
10	Gene Editing for Corneal Stromal Regeneration. Methods in Molecular Biology, 2020, 2145, 59-75.	0.4	1
11	Personalised genome editing – The future for corneal dystrophies. Progress in Retinal and Eye Research, 2018, 65, 147-165.	7.3	31
12	Mouse model for inherited renal fibrosis associated with endoplasmic reticulum stress. DMM Disease Models and Mechanisms, 2017, 10, 773-786.	1.2	34
13	Towards personalised allele-specific CRISPR gene editing to treat autosomal dominant disorders. Scientific Reports, 2017, 7, 16174.	1.6	66
14	Mutant Mice With Calcium-Sensing Receptor Activation Have Hyperglycemia That Is Rectified by Calcilytic Therapy. Endocrinology, 2017, 158, 2486-2502.	1.4	31
15	Gα11 mutation in mice causes hypocalcemia rectifiable by calcilytic therapy. JCI Insight, 2017, 2, e91103.	2.3	28
16	Cinacalcet corrects hypercalcemia in mice with an inactivating Gl $ m \pm 11$ mutation. JCI Insight, 2017, 2, .	2.3	17
17	A G-protein Subunit-α11 Loss-of-Function Mutation, Thr54Met, Causes Familial Hypocalciuric Hypercalcemia Type 2 (FHH2). Journal of Bone and Mineral Research, 2016, 31, 1200-1206.	3.1	40
18	Allosteric Modulation of the Calcium-sensing Receptor Rectifies Signaling Abnormalities Associated with G-protein α-11 Mutations Causing Hypercalcemic and Hypocalcemic Disorders. Journal of Biological Chemistry, 2016, 291, 10876-10885.	1.6	31

M ANDREW NESBIT

#	Article	IF	CITATIONS
19	Identification of a G-Protein Subunit-α11 Gain-of-Function Mutation, Val340Met, in a Family With Autosomal Dominant Hypocalcemia Type 2 (ADH2). Journal of Bone and Mineral Research, 2016, 31, 1207-1214.	3.1	36
20	Cinacalcet for Symptomatic Hypercalcemia Caused by <i>AP2S1</i> Mutations. New England Journal of Medicine, 2016, 374, 1396-1398.	13.9	38
21	Mice with an N-Ethyl-N-Nitrosourea (ENU) Induced Tyr209Asn Mutation in Natriuretic Peptide Receptor 3 (NPR3) Provide a Model for Kyphosis Associated with Activation of the MAPK Signaling Pathway. PLoS ONE, 2016, 11, e0167916.	1.1	11
22	Factors influencing success of clinical genome sequencing across a broad spectrum of disorders. Nature Genetics, 2015, 47, 717-726.	9.4	310
23	Adaptor protein-2 sigma subunit mutations causing familial hypocalciuric hypercalcaemia type 3 (FHH3) demonstrate genotype–phenotype correlations, codon bias and dominant-negative effects. Human Molecular Genetics, 2015, 24, 5079-5092.	1.4	69
24	The Calcilytic Agent NPS 2143 Rectifies Hypocalcemia in a Mouse Model With an Activating Calcium-Sensing Receptor (CaSR) Mutation: Relevance to Autosomal Dominant Hypocalcemia Type 1 (ADH1). Endocrinology, 2015, 156, 3114-3121.	1.4	55
25	Role of Ca2+ and L-Phe in Regulating Functional Cooperativity of Disease-Associated "Toggle― Calcium-Sensing Receptor Mutations. PLoS ONE, 2014, 9, e113622.	1.1	18
26	An N-Ethyl-N-Nitrosourea Induced Corticotropin-Releasing Hormone Promoter Mutation Provides a Mouse Model for Endogenous Glucocorticoid Excess. Endocrinology, 2014, 155, 908-922.	1.4	28
27	Mutations Affecting G-Protein Subunit α ₁₁ in Hypercalcemia and Hypocalcemia. New England Journal of Medicine, 2013, 368, 2476-2486.	13.9	340
28	Mutations in AP2S1 cause familial hypocalciuric hypercalcemia type 3. Nature Genetics, 2013, 45, 93-97.	9.4	242
29	Identification of 70 calcium-sensing receptor mutations in hyper- and hypo-calcaemic patients: evidence for clustering of extracellular domain mutations at calcium-binding sites. Human Molecular Genetics, 2012, 21, 2768-2778.	1.4	154
30	Identification of a Second Kindred with Familial Hypocalciuric Hypercalcemia Type 3 (FHH3) Narrows Localization to a <3.5 Megabase Pair Region on Chromosome 19q13.3. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 1947-1954.	1.8	34
31	Characterization of GATA3 Mutations in the Hypoparathyroidism, Deafness, and Renal Dysplasia (HDR) Syndrome. Journal of Biological Chemistry, 2004, 279, 22624-22634.	1.6	145
32	X-linked hypoparathyroidism region on Xq27 is evolutionarily conserved with regions on 3q26 and 13q34 and contains a novel P-type ATPase. Genomics, 2004, 84, 1060-1070.	1.3	18
33	X-Linked Hypophosphatemia Attributable to Pseudoexons of the PHEX Gene. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 3840-3844.	1.8	10
34	GATA3 haplo-insufficiency causes human HDR syndrome. Nature, 2000, 406, 419-422.	13.7	516