
Sangyong Shin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10635421/publications.pdf Version: 2024-02-01

SANCYONG SHIN

#	Article	IF	CITATIONS
1	Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nature Catalysis, 2020, 3, 368-375.	34.4	220
2	Controlling the Oxidation State of Pt Single Atoms for Maximizing Catalytic Activity. Angewandte Chemie - International Edition, 2020, 59, 20691-20696.	13.8	113
3	Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO2 reduction toward C2+ products. Nature Communications, 2021, 12, 3765.	12.8	99
4	Heterogeneous Atomic Catalysts Overcoming the Limitations of Single-Atom Catalysts. ACS Nano, 2020, 14, 14355-14374.	14.6	97
5	Palladium Singleâ€Atom Catalysts Supported on C@C ₃ N ₄ for Electrochemical Reactions. ChemElectroChem, 2019, 6, 4757-4764.	3.4	70
6	Highly durable fuel cell catalysts using crosslinkable block copolymer-based carbon supports with ultralow Pt loadings. Energy and Environmental Science, 2020, 13, 4921-4929.	30.8	61
7	Changes in the oxidation state of Pt single-atom catalysts upon removal of chloride ligands and their effect for electrochemical reactions. Chemical Communications, 2019, 55, 6389-6392.	4.1	44
8	Ultra‣ow Pt Loaded Porous Carbon Microparticles with Controlled Channel Structure for Highâ€Performance Fuel Cell Catalysts. Advanced Energy Materials, 2021, 11, 2102970.	19.5	29
9	Controlling the Oxidation State of Pt Single Atoms for Maximizing Catalytic Activity. Angewandte Chemie, 2020, 132, 20872-20877.	2.0	28
10	Lens-Shaped Carbon Particles with Perpendicularly-Oriented Channels for High-Performance Proton Exchange Membrane Fuel Cells. ACS Nano, 2022, 16, 2988-2996.	14.6	24
11	Highly Durable Heterogeneous Atomic Catalysts. Accounts of Chemical Research, 2022, 55, 1372-1382.	15.6	15
12	Gas-Permeable Iron-Doped Ceria Shell on Rh Nanoparticles with High Activity and Durability. Jacs Au, 2022, 2, 1115-1122.	7.9	12
13	Controlled Doping of Electrocatalysts through Engineering Impurities. Advanced Materials, 2022, 34, e2203030.	21.0	12
14	Electrodeposited Sn–Cu@Sn dendrites for selective electrochemical CO ₂ reduction to formic acid. Nanoscale, 2022, 14, 9297-9303.	5.6	10
15	Seemingly Negligible Amounts of Platinum Nanoparticles Mislead Electrochemical Oxygen Reduction Reaction Pathway on Platinum Singleâ€Atom Catalysts. ChemElectroChem, 2020, 7, 3716-3719.	3.4	8