
David J Cappelleri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1063407/publications.pdf Version: 2024-02-01

DAVID I CADDELLEDI

#	Article	IF	CITATIONS
1	Magnetic Actuation Methods in Bio/Soft Robotics. Advanced Functional Materials, 2021, 31, 2005137.	14.9	126
2	Transcriptome transfer produces a predictable cellular phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7624-7629.	7.1	86
3	Controlling multiple microrobots: recent progress and future challenges. Journal of Micro-Bio Robotics, 2015, 10, 1-11.	2.1	81
4	High-accuracy, high-speed 3D structured light imaging techniques and potential applications to intelligent robotics. International Journal of Intelligent Robotics and Applications, 2017, 1, 86-103.	2.8	66
5	Design of Microscale Magnetic Tumbling Robots for Locomotion in Multiple Environments and Complex Terrains. Micromachines, 2018, 9, 68.	2.9	62
6	Towards Mobile Microrobot Swarms for Additive Micromanufacturing. International Journal of Advanced Robotic Systems, 2014, 11, 150.	2.1	58
7	A novel micro-scale magnetic tumbling microrobot. Journal of Micro-Bio Robotics, 2013, 8, 1-12.	2.1	49
8	A two dimensional vision-based force sensor for microrobotic applications. Sensors and Actuators A: Physical, 2011, 171, 340-351.	4.1	48
9	Smart Polymers for Microscale Machines. Advanced Functional Materials, 2021, 31, 2007125.	14.9	48
10	A Microforce-Sensing Mobile Microrobot for Automated Micromanipulation Tasks. IEEE Transactions on Automation Science and Engineering, 2019, 16, 518-530.	5.2	47
11	Towards Independent Control of Multiple Magnetic Mobile Microrobots. Micromachines, 2016, 7, 3.	2.9	45
12	4D Printing: Enabling Technology for Microrobotics Applications. Advanced Intelligent Systems, 2021, 3, 2000216.	6.1	43
13	Control of Magnetic Microrobot Teams for Temporal Micromanipulation Tasks. IEEE Transactions on Robotics, 2018, 34, 1472-1489.	10.3	38
14	Designing local magnetic fields and path planning for independent actuation of multiple mobile microrobots. Journal of Micro-Bio Robotics, 2017, 12, 21-31.	2.1	34
15	3Dâ€Printed Microrobots with Integrated Structural Color for Identification and Tracking. Advanced Intelligent Systems, 2020, 2, 1900147.	6.1	32
16	Automated Assembly for Mesoscale Parts. IEEE Transactions on Automation Science and Engineering, 2011, 8, 598-613.	5.2	30
17	Modeling and global trajectory tracking control for an over-actuated MAV. Advanced Robotics, 2014, 28, 145-155.	1.8	30
18	A Tumbling Magnetic Microrobot System for Biomedical Applications. Micromachines, 2020, 11, 861.	2.9	26

DAVID J CAPPELLERI

#	Article	IF	CITATIONS
19	Local Magnetic Field Design and Characterization for Independent Closed-Loop Control of Multiple Mobile Microrobots. IEEE/ASME Transactions on Mechatronics, 2020, 25, 526-534.	5.8	26
20	Caging micromanipulation for automated microassembly. , 2011, , .		22
21	A Magnetic Microrobot with in situ Force Sensing Capabilities. Robotics, 2014, 3, 106-119.	3.5	22
22	Automated Complete Blood Cell Count and Malaria Pathogen Detection Using Convolution Neural Network. IEEE Robotics and Automation Letters, 2020, 5, 1047-1054.	5.1	22
23	Toward the Design of a Decoupled, Two-Dimensional, Vision-Based μN Force Sensor. Journal of Mechanisms and Robotics, 2010, 2, .	2.2	21
24	A magnetic thin film microrobot with two operating modes. , 2011, , .		21
25	Towards Functional Mobile Microrobotic Systems. Robotics, 2019, 8, 69.	3.5	20
26	Magnetically Aligned Nanorods in Alginate Capsules (MANiACs): Soft Matter Tumbling Robots for Manipulation and Drug Delivery. Micromachines, 2019, 10, 230.	2.9	19
27	Linear control design, allocation, and implementation for the Omnicopter MAV. , 2013, , .		18
28	A tumbling magnetic microrobot with flexible operating modes. , 2013, , .		16
29	Design of the I-BoomCopter UAV for environmental interaction. , 2017, , .		15
30	Real-Time Force-Feedback Micromanipulation Using Mobile Microrobots With Colored Fiducials. IEEE Robotics and Automation Letters, 2018, 3, 3591-3597.	5.1	15
31	Caging for 2D and 3D micromanipulation. Journal of Micro-Nano Mechatronics, 2012, 7, 115-129.	1.0	13
32	Towards flexible, automated microassembly with caging micromanipulation. , 2013, , .		13
33	Autonomous Control of the Interacting-BoomCopter UAV for Remote Sensor Mounting. , 2018, , .		13
34	Path Planning and Micromanipulation Using a Learned Model. IEEE Robotics and Automation Letters, 2018, 3, 3089-3096.	5.1	12
35	Design of the Interacting-BoomCopter Unmanned Aerial Vehicle for Remote Sensor Mounting. Journal of Mechanisms and Robotics, 2018, 10, .	2.2	11
36	Design of the \$mu\$MAZE Platform and Microrobots for Independent Control and Micromanipulation Tasks. IEEE Robotics and Automation Letters, 2020, 5, 5677-5684.	5.1	10

DAVID J CAPPELLERI

#	Article	IF	CITATIONS
37	Soft Capsule Magnetic Millirobots for Region-Specific Drug Delivery in the Central Nervous System. Frontiers in Robotics and Al, 2021, 8, 702566.	3.2	10
38	Caging grasps for micromanipulation & amp; microassembly. , 2011, , .		9
39	Path Planning and Control for Autonomous Navigation of Single and Multiple Magnetic Mobile Microrobots. , 2015, , .		9
40	Toward a Fully Automated High-Throughput Phototransfection System. Journal of the Association for Laboratory Automation, 2010, 15, 329-341.	2.8	8
41	Incorporating in-situ force sensing capabilities in a magnetic microrobot. , 2014, , .		8
42	Towards a real-time 3D vision-based micro-force sensing probe. Journal of Micro-Bio Robotics, 2020, 16, 23-32.	2.1	7
43	Towards a Comprehensive and Robust Micromanipulation System with Force-Sensing and VR Capabilities. Micromachines, 2021, 12, 784.	2.9	7
44	A Micro-Scale Magnetic Tumbling Microrobot. , 2012, , .		6
45	Tumbling Magnetic Microrobots for Biomedical Applications. , 2019, , .		6
46	Cooperative Micromanipulators for 3D Micromanipulation and Assembly. , 2012, , .		5
47	A Novel Micro Aerial Vehicle Design: The Evolution of the Omnicopter MAV. , 2014, , .		5
48	Stiffness Characterization and Micromanipulation for Biomedical Applications using the Vision-based Force-Sensing Magnetic Mobile Microrobot. , 2020, , .		5
49	Autonomous Door Opening With the Interacting-BoomCopter Unmanned Aerial Vehicle. Journal of Mechanisms and Robotics, 2020, 12, .	2.2	5
50	Modular End-Effector System for Autonomous Robotic Maintenance & Repair. , 2022, , .		5
51	Complete dynamic modeling, control and optimization for an over-actuated MAV. , 2013, , .		4
52	Independent actuation of multiple microrobots using localized magnetic fields. , 2016, , .		4
53	Magnetic mobile microrobots for mechanobiology and automated biomanipulation. , 2017, , 197-219.		4
54	Tumbling Microrobots for Future Medicine. American Scientist, 2018, 106, 210.	0.1	4

DAVID J CAPPELLERI

#	Article	IF	CITATIONS
55	Automated Microassembly Sequence Planning With Sub-Assemblies. , 2016, , .		3
56	Development of an Automated Flexible Micro-Soldering Station. , 2017, , .		3
57	Pose-Estimate-Based Target Tracking for Human-Guided Remote Sensor Mounting with a UAV. , 2020, , .		3
58	P-AgBot: In-Row & Under-Canopy Agricultural Robot for Monitoring and Physical Sampling. IEEE Robotics and Automation Letters, 2022, 7, 7942-7949.	5.1	3
59	Design of Compliant Three-Dimensional Printed Surgical End-Effectors for Robotic Lumbar Discectomy. Journal of Mechanisms and Robotics, 2019, 11, .	2.2	2
60	Design of a 3D Vision-based Micro-Force Sensing Probe. , 2019, , .		2
61	3Dâ€Printed Microrobots with Integrated Structural Color for Identification and Tracking. Advanced Intelligent Systems, 2020, 2, 2070052.	6.1	2
62	Dynamic Simulation-Guided Design of Tumbling Magnetic Microrobots. Journal of Mechanisms and Robotics, 2021, 13, .	2.2	2
63	Caging grasps for micromanipulation & amp; amp; microassembly. , 2011, , .		2
64	Going Hands-Free: MagnetoSutureâ"¢ for Untethered Guided Needle Penetration of Human Tissue Ex Vivo. Robotics, 2021, 10, 129.	3.5	2
65	Modeling of Bilayer Hydrogel Springs for Microrobots with Adaptive Locomotion. , 2021, , .		2
66	Modeling, Control and Planning for Multiple Mobile Microrobots. , 2019, , .		1
67	Towards fully automated phototransfection. , 2009, , .		0
68	Design of the I-BoomCopter UAV for Remote Sensor Mounting. , 2017, , .		0