Nafiseh Baheiraei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10632865/publications.pdf

Version: 2024-02-01

		304368	476904
30	1,266 citations	22	29
papers	citations	h-index	g-index
30	30	30	1763
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Modeling of the PHEMA-gelatin scaffold enriched with graphene oxide utilizing finite element method for bone tissue engineering. Computer Methods in Biomechanics and Biomedical Engineering, 2023, 26, 499-507.	0.9	2
2	Electrically conductive carbonâ€based (bio)â€nanomaterials for cardiac tissue engineering. Bioengineering and Translational Medicine, 2023, 8, .	3.9	29
3	Fabrication and characterization of PHEMA–gelatin scaffold enriched with graphene oxide for bone tissue engineering. Journal of Orthopaedic Surgery and Research, 2022, 17, 216.	0.9	14
4	Synthesis and characterization of collagen/calcium phosphate scaffolds incorporating antibacterial agent for bone tissue engineering application. Journal of Bioactive and Compatible Polymers, 2021, 36, 29-43.	0.8	12
5	Multifunctional Conductive Biomaterials as Promising Platforms for Cardiac Tissue Engineering. ACS Biomaterials Science and Engineering, 2021, 7, 55-82.	2.6	26
6	Microfluidic devices in tissue engineering., 2021,, 209-233.		5
7	Biohybrid oxidized alginate/myocardial extracellular matrix injectable hydrogels with improved electromechanical properties for cardiac tissue engineering. International Journal of Biological Macromolecules, 2021, 180, 692-708.	3.6	57
8	Biomimetic reduced graphene oxide coated collagen scaffold for in situ bone regeneration. Scientific Reports, 2021, 11, 16783.	1.6	36
9	Development of a Novel Electroactive Cardiac Patch Based on Carbon Nanofibers and Gelatin Encouraging Vascularization. Applied Biochemistry and Biotechnology, 2020, 190, 931-948.	1.4	39
10	Reduced graphene oxide facilitates biocompatibility of alginate for cardiac repair. Journal of Bioactive and Compatible Polymers, 2020, 35, 363-377.	0.8	22
11	Bioactive Materials: A Comprehensive Review on Interactions with Biological Microenvironment Based on the Immune Response. Journal of Bionic Engineering, 2019, 16, 563-581.	2.7	39
12	Electroactive cardiac patch containing reduced graphene oxide with potential antibacterial properties. Materials Science and Engineering C, 2019, 104, 109921.	3.8	68
13	A review of accelerated wound healing approaches: biomaterial- assisted tissue remodeling. Journal of Materials Science: Materials in Medicine, 2019, 30, 120.	1.7	74
14	Self-gelling electroactive hydrogels based on chitosan–aniline oligomers/agarose for neural tissue engineering with on-demand drug release. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110549.	2.5	74
15	Preparation and Characterization of Nanocomposite Scaffolds (Collagen/ \hat{l}^2 -TCP/SrO) for Bone Tissue Engineering. Tissue Engineering and Regenerative Medicine, 2019, 16, 237-251.	1.6	41
16	Effects of collagen/ \hat{l}^2 -tricalcium phosphate bone graft to regenerate bone in critically sized rabbit calvarial defects. Journal of Applied Biomaterials and Functional Materials, 2019, 17, 228080001882049.	0.7	25
17	Three-dimensional graphene foam as a conductive scaffold for cardiac tissue engineering. Journal of Biomaterials Applications, 2019, 34, 74-85.	1.2	41
18	Electrospun electroactive nanofibers of gelatinâ€oligoaniline/Poly (vinyl alcohol) templates for architecting of cardiac tissue with onâ€demand drug release. Polymers for Advanced Technologies, 2019, 30, 1473-1483.	1.6	37

#	Article	IF	CITATIONS
19	Reduced graphene oxide: osteogenic potential for bone tissue engineering. IET Nanobiotechnology, 2019, 13, 720-725.	1.9	31
20	Electroactive graphene oxideâ€incorporated collagen assisting vascularization for cardiac tissue engineering. Journal of Biomedical Materials Research - Part A, 2019, 107, 204-219.	2.1	90
21	Development of a bioactive porous collagen/l²â€tricalcium phosphate bone graft assisting rapid vascularization for bone tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2018, 106, 73-85.	2.1	52
22	The effects of strontium incorporation on a novel gelatin/bioactive glass bone graft: In vitro and in vivo characterization. Ceramics International, 2018, 44, 14217-14227.	2.3	24
23	Electroactive polyurethane/siloxane derived from castor oil as a versatile cardiac patch, part l: Synthesis, characterization, and myoblast proliferation and differentiation. Journal of Biomedical Materials Research - Part A, 2016, 104, 775-787.	2.1	24
24	Electroactive polyurethane/siloxane derived from castor oil as a versatile cardiac patch, part II: HLâ€1 cytocompatibility and electrical characterizations. Journal of Biomedical Materials Research - Part A, 2016, 104, 1398-1407.	2.1	20
25	Investigation of Magnesium Incorporation within Gelatin/Calcium Phosphate Nanocomposite Scaffold for Bone Tissue Engineering. International Journal of Applied Ceramic Technology, 2015, 12, 245-253.	1.1	20
26	Preparation of a porous conductive scaffold from aniline pentamer-modified polyurethane/PCL blend for cardiac tissue engineering. Journal of Biomedical Materials Research - Part A, 2015, 103, 3179-3187.	2.1	104
27	Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application. Materials Science and Engineering C, 2014, 44, 24-37.	3.8	125
28	Preparation and Characterization of Agarose-Gelatin Blend Hydrogels as a Cell Encapsulation Matrix: An In-Vitro Study. Journal of Macromolecular Science - Physics, 2012, 51, 1606-1616.	0.4	26
29	A Porous Hydroxyapatite/Gelatin Nanocomposite Scaffold for Bone Tissue Repair: <i>In Vitro</i> and <i>In Vivo</i> Evaluation. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 2353-2368.	1.9	62
30	Preparation of a biomimetic nanocomposite scaffold for bone tissue engineering via mineralization of gelatin hydrogel and study of mineral transformation in simulated body fluid. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1347-1355.	2.1	47