Agata Copani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10632811/publications.pdf Version: 2024-02-01

ΔCATA CORANI

#	Article	IF	CITATIONS
1	β-Amyloid Monomers Are Neuroprotective. Journal of Neuroscience, 2009, 29, 10582-10587.	3.6	350
2	Induction of Dickkopf-1, a Negative Modulator of the Wnt Pathway, Is Associated with Neuronal Degeneration in Alzheimer's Brain. Journal of Neuroscience, 2004, 24, 6021-6027.	3.6	337
3	Metabotropic Glutamate Receptor Subtypes as Targets for Neuroprotective Drugs. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 1013-1033.	4.3	297
4	Divide and Die: Cell Cycle Events as Triggers of Nerve Cell Death. Journal of Neuroscience, 2004, 24, 9232-9239.	3.6	268
5	Depression and Alzheimer's disease: Neurobiological links and common pharmacological targets. European Journal of Pharmacology, 2010, 626, 64-71.	3.5	240
6	Activation of cell-cycle-associated proteins in neuronal death: a mandatory or dispensable path?. Trends in Neurosciences, 2001, 24, 25-31.	8.6	217
7	TGF-β1 targets the GSK-3β/β-catenin pathway via ERK activation in the transition of human lung fibroblasts into myofibroblasts. Pharmacological Research, 2008, 57, 274-282.	7.1	180
8	Neurobiological links between depression and AD: The role of TGF-β1 signaling as a new pharmacological target. Pharmacological Research, 2018, 130, 374-384.	7.1	126
9	The Wnt pathway, cell-cycle activation and β-amyloid: novel therapeutic strategies in Alzheimer's disease?. Trends in Pharmacological Sciences, 2003, 24, 233-238.	8.7	124
10	β-Amyloid neurotoxicity: A discussion of in vitro findings. Neurobiology of Aging, 1992, 13, 587-590.	3.1	112
11	Targeting Group II Metabotropic Glutamate (mGlu) Receptors for the Treatment of Psychosis Associated with Alzheimer's Disease: Selective Activation of mGlu2 Receptors Amplifies Î ² -Amyloid Toxicity in Cultured Neurons, Whereas Dual Activation of mGlu2 and mGlu3 Receptors Is Neuroprotective Molecular Pharmacology 2011, 79, 618-626	2.3	111
12	Protective effect of the metabotropic glutamate receptor agonist, DCG-IV, against excitotoxic neuronal death. European Journal of Pharmacology, 1994, 256, 109-112.	3.5	109
13	Activation of Metabotropic Glutamate Receptors Prevents Neuronal Apoptosis in Culture. Journal of Neurochemistry, 1995, 64, 101-108.	3.9	109
14	B- Amyloid increases neuronal susceptibility to injufy by glucose deprivation. NeuroReport, 1991, 2, 763-765.	1.2	108
15	Neuroprotective effects of sigma-1 receptor agonists against beta-amyloid-induced toxicity. NeuroReport, 2005, 16, 1223-1226.	1.2	107
16	Inhibition of Wnt signaling, modulation of Tau phosphorylation and induction of neuronal cell death by DKK1. Neurobiology of Disease, 2006, 24, 254-265.	4.4	107
17	TGF-Î ² 1 Pathway as a New Target for Neuroprotection in Alzheimer's Disease. CNS Neuroscience and Therapeutics, 2011, 17, 237-249.	3.9	96
18	Dysfunction of TGF-β1 signaling in Alzheimer's disease: perspectives for neuroprotection. Cell and Tissue Research, 2012, 347, 291-301.	2.9	96

Agata Copani

#	Article	IF	CITATIONS
19	β-Amyloid-Induced Synthesis of the Ganglioside Gd3 Is a Requisite for Cell Cycle Reactivation and Apoptosis in Neurons. Journal of Neuroscience, 2002, 22, 3963-3968.	3.6	89
20	Functional partnership between mGlu3 and mGlu5 metabotropic glutamate receptors in the central nervous system. Neuropharmacology, 2018, 128, 301-313.	4.1	79
21	Inhibition of the canonical Wnt signaling pathway by apolipoprotein E4 in PC12 cells. Journal of Neurochemistry, 2006, 98, 364-371.	3.9	78
22	Fingolimod protects cultured cortical neurons against excitotoxic death. Pharmacological Research, 2013, 67, 1-9.	7.1	77
23	DNA Polymerase-beta Is Expressed Early in Neurons of Alzheimer's Disease Brain and Is Loaded into DNA Replication Forks in Neurons Challenged with beta-Amyloid. Journal of Neuroscience, 2006, 26, 10949-10957.	3.6	76
24	TGF-β1 protects against Aβ-neurotoxicity via the phosphatidylinositol-3-kinase pathway. Neurobiology of Disease, 2008, 30, 234-242.	4.4	74
25	Metabotropic glutamate receptors in neurodegeneration/neuroprotection: Still a hot topic?. Neurochemistry International, 2012, 61, 559-565.	3.8	66
26	An activity-dependent switch from facilitation to inhibition in the control of excitotoxicity by group I metabotropic glutamate receptors. European Journal of Neuroscience, 2001, 13, 1469-1478.	2.6	62
27	The impact of metabotropic glutamate receptors into active neurodegenerative processes: A "dark side―in the development of new symptomatic treatments for neurologic and psychiatric disorders. Neuropharmacology, 2017, 115, 180-192.	4.1	62
28	Induction of the Wnt Antagonist Dickkopf-1 Is Involved in Stress-Induced Hippocampal Damage. PLoS ONE, 2011, 6, e16447.	2.5	56
29	Erratic expression of DNA polymerases by βâ€∎myloid causes neuronal death. FASEB Journal, 2002, 16, 2006-2008.	0.5	55
30	The Wnt Antagonist, Dickkopf-1, as a Target for the Treatment of Neurodegenerative Disorders. Neurochemical Research, 2008, 33, 2401-2406.	3.3	55
31	The nature of the cell cycle in neurons: Focus on a "non-canonical―pathway of DNA replication causally related to death. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 409-412.	3.8	49
32	Selective activation of group-II metabotropic glutamate receptors is protective against excitotoxic neuronal death. European Journal of Pharmacology, 1998, 356, 271-274.	3.5	44
33	Monomeric ß-amyloid interacts with type-1 insulin-like growth factor receptors to provide energy supply to neurons. Frontiers in Cellular Neuroscience, 2015, 9, 297.	3.7	44
34	Fluoxetine Prevents Aβ1-42-Induced Toxicity via a Paracrine Signaling Mediated by Transforming-Growth-Factor-β1. Frontiers in Pharmacology, 2016, 7, 389.	3.5	42
35	A promising connection between BDNF and Alzheimerâ \in ™s disease. Aging, 2018, 10, 1791-1792.	3.1	42
36	Neurotoxic properties of the anabolic androgenic steroids nandrolone and methandrostenolone in primary neuronal cultures. Journal of Neuroscience Research, 2011, 89, 592-600.	2.9	40

Agata Copani

#	Article	IF	CITATIONS
37	Integrins mediate βâ€amyloidâ€induced cellâ€cycle activation and neuronal death. Journal of Neuroscience Research, 2008, 86, 350-355.	2.9	36
38	Beta-Amyloid Monomer and Insulin/IGF-1 Signaling in Alzheimer's Disease. Molecular Neurobiology, 2012, 46, 605-613.	4.0	36
39	The antineoplastic drug flavopiridol reverses memory impairment induced by Amyloid-ß 1-42 oligomers in mice. Pharmacological Research, 2016, 106, 10-20.	7.1	32
40	Nicergoline, a drug used for age-dependent cognitive impairment, protects cultured neurons against β-amyloid toxicity. Brain Research, 2005, 1047, 30-37.	2.2	29
41	The underexplored question of \hat{l}^2 -amyloid monomers. European Journal of Pharmacology, 2017, 817, 71-75.	3.5	29
42	Acâ€LPFFDâ€Th: A Trehaloseâ€Conjugated Peptidomimetic as a Strong Suppressor of Amyloidâ€Î² Oligomer Formation and Cytotoxicity. ChemBioChem, 2016, 17, 1541-1549.	2.6	28
43	Identification of 5-Methoxyflavone as a Novel DNA Polymerase-Beta Inhibitor and Neuroprotective Agent against Beta-Amyloid Toxicity. Journal of Natural Products, 2015, 78, 2704-2711.	3.0	21
44	Neuroprotective effects of the monoamine oxidase inhibitor tranylcypromine and its amide derivatives against Aβ(1–42)-induced toxicity. European Journal of Pharmacology, 2015, 764, 256-263.	3.5	14
45	β-amyloid monomers drive up neuronal aerobic glycolysis in response to energy stressors. Aging, 2021, 13, 18033-18050.	3.1	14
46	DNA polymeraseâ€Î² mediates the neurogenic effect of βâ€∎myloid protein in cultured subventricular zone neurospheres. Journal of Neuroscience Research, 2012, 90, 559-567.	2.9	12
47	The CDC2 I-G-T haplotype associated with the APOE ɛ4 allele increases the risk of sporadic Alzheimer's disease in Sicily. Neuroscience Letters, 2007, 419, 195-198.	2.1	9