
Jarno Salonen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10631931/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesoporous Silicon in Drug Delivery Applications. Journal of Pharmaceutical Sciences, 2008, 97, 632-653.	3.3	398
2	Biocompatibility of Thermally Hydrocarbonized Porous Silicon Nanoparticles and their Biodistribution in Rats. ACS Nano, 2010, 4, 3023-3032.	14.6	316
3	Size, Stability, and Porosity of Mesoporous Nanoparticles Characterized with Light Scattering. Nanoscale Research Letters, 2017, 12, 74.	5.7	168
4	In vitro cytotoxicity of porous silicon microparticles: Effect of the particle concentration, surface chemistry and size. Acta Biomaterialia, 2010, 6, 2721-2731.	8.3	158
5	Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. Biomaterials, 2011, 32, 2625-2633.	11.4	157
6	Fabrication and chemical surface modification of mesoporous silicon for biomedical applications. Chemical Engineering Journal, 2008, 137, 162-172.	12.7	152
7	Intravenous Delivery of Hydrophobin-Functionalized Porous Silicon Nanoparticles: Stability, Plasma Protein Adsorption and Biodistribution. Molecular Pharmaceutics, 2012, 9, 654-663.	4.6	146
8	Drug Delivery Formulations of Ordered and Nonordered Mesoporous Silica: Comparison of Three Drug Loading Methods. Journal of Pharmaceutical Sciences, 2011, 100, 3294-3306.	3.3	144
9	Multistaged Nanovaccines Based on Porous Silicon@Acetalated Dextran@Cancer Cell Membrane for Cancer Immunotherapy. Advanced Materials, 2017, 29, 1603239.	21.0	144
10	Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles. Journal of Controlled Release, 2013, 170, 268-278.	9.9	141
11	Fabrication of a Multifunctional Nanoâ€inâ€micro Drug Delivery Platform by Microfluidic Templated Encapsulation of Porous Silicon in Polymer Matrix. Advanced Materials, 2014, 26, 4497-4503.	21.0	138
12	Semimetallic TiO ₂ Nanotubes. Angewandte Chemie - International Edition, 2009, 48, 7236-7239.	13.8	133
13	Microfluidic assisted one-step fabrication of porous silicon@acetalated dextran nanocomposites for precisely controlled combination chemotherapy. Biomaterials, 2015, 39, 249-259.	11.4	133
14	Failure of MTT as a Toxicity Testing Agent for Mesoporous Silicon Microparticles. Chemical Research in Toxicology, 2007, 20, 1913-1918.	3.3	129
15	Comparison of mesoporous silicon and non-ordered mesoporous silica materials as drug carriers for itraconazole. International Journal of Pharmaceutics, 2011, 414, 148-156.	5.2	124
16	Core/Shell Nanocomposites Produced by Superfast Sequential Microfluidic Nanoprecipitation. Nano Letters, 2017, 17, 606-614.	9.1	123
17	Carbon doping of self-organized TiO2nanotube layers by thermal acetylene treatment. Nanotechnology, 2007, 18, 105604.	2.6	121
18	Inhibition of Multidrug Resistance of Cancer Cells by Coâ€Đelivery of DNA Nanostructures and Drugs Using Porous Silicon Nanoparticles@Giant Liposomes. Advanced Functional Materials, 2015, 25, 3330-3340.	14.9	114

#	Article	IF	CITATIONS
19	Characterization of thermally carbonized porous silicon humidity sensor. Sensors and Actuators A: Physical, 2004, 112, 244-247.	4.1	112
20	Microfluidic assembly of a nano-in-micro dual drug delivery platform composed of halloysite nanotubes and a pH-responsive polymer for colon cancer therapy. Acta Biomaterialia, 2017, 48, 238-246.	8.3	109
21	Amine Modification of Thermally Carbonized Porous Silicon with Silane Coupling Chemistry. Langmuir, 2012, 28, 14045-14054.	3.5	108
22	Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors. Nanoscale, 2014, 6, 10377-10387.	5.6	108
23	Microfluidic Assembly of Monodisperse Multistage pHâ€Responsive Polymer/Porous Silicon Composites for Precisely Controlled Multiâ€Drug Delivery. Small, 2014, 10, 2029-2038.	10.0	105
24	Multifunctional Porous Silicon for Therapeutic Drug Delivery and Imaging. Current Drug Discovery Technologies, 2011, 8, 228-249.	1.2	97
25	Thiolation and Cellâ€Penetrating Peptide Surface Functionalization of Porous Silicon Nanoparticles for Oral Delivery of Insulin. Advanced Functional Materials, 2016, 26, 3405-3416.	14.9	94
26	Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications. International Journal of Pharmaceutics, 2017, 533, 156-168.	5.2	93
27	Porous Siliconâ€Based Optical Microsensors for Volatile Organic Analytes: Effect of Surface Chemistry on Stability and Specificity. Advanced Functional Materials, 2010, 20, 2874-2883.	14.9	92
28	Cytotoxicity study of ordered mesoporous silica MCM-41 and SBA-15 microparticles on Caco-2 cells. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74, 483-494.	4.3	87
29	Photothermal-responsive nanosized hybrid polymersome as versatile therapeutics codelivery nanovehicle for effective tumor suppression. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7744-7749.	7.1	85
30	Enhanced in vitro permeation of furosemide loaded into thermally carbonized mesoporous silicon (TCPSi) microparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 66, 348-356.	4.3	83
31	Surface Chemistry, Reactivity, and Pore Structure of Porous Silicon Oxidized by Various Methods. Langmuir, 2012, 28, 10573-10583.	3.5	82
32	Effect of isotonic solutions and peptide adsorption on zeta potential of porous silicon nanoparticle drug delivery formulations. International Journal of Pharmaceutics, 2012, 431, 230-236.	5.2	82
33	Drugâ€Loaded Multifunctional Nanoparticles Targeted to the Endocardial Layer of the Injured Heart Modulate Hypertrophic Signaling. Small, 2017, 13, 1701276.	10.0	82
34	Multifunctional Nanohybrid Based on Porous Silicon Nanoparticles, Gold Nanoparticles, and Acetalated Dextran for Liver Regeneration and Acute Liver Failure Theranostics. Advanced Materials, 2018, 30, e1703393.	21.0	80
35	Mesoporous Silicon (PSi) for Sustained Peptide Delivery: Effect of PSi Microparticle Surface Chemistry on Peptide YY3-36 Release. Pharmaceutical Research, 2012, 29, 837-846.	3.5	79
36	Multistage pH-responsive mucoadhesive nanocarriers prepared by aerosol flow reactor technology: A controlled dual protein-drug delivery system. Biomaterials, 2015, 68, 9-20.	11.4	77

#	Article	IF	CITATIONS
37	Microfluidic assembly of multistage porous silicon–lipid vesicles for controlled drug release. Lab on A Chip, 2014, 14, 1083-1086.	6.0	75
38	Determination of the Physical State of Drug Molecules in Mesoporous Silicon with Different Surface Chemistries. Langmuir, 2009, 25, 6137-6142.	3.5	73
39	Gold Nanorods Conjugated Porous Silicon Nanoparticles Encapsulated in Calcium Alginate Nano Hydrogels Using Microemulsion Templates. Nano Letters, 2018, 18, 1448-1453.	9.1	73
40	Hierarchical structured and programmed vehicles deliver drugs locally to inflamed sites of intestine. Biomaterials, 2018, 185, 322-332.	11.4	73
41	Nanostructured Porous Siliconâ€5olid Lipid Nanocomposite: Towards Enhanced Cytocompatibility and Stability, Reduced Cellular Association, and Prolonged Drug Release. Advanced Functional Materials, 2013, 23, 1893-1902.	14.9	72
42	Functional hydrophobin-coating of thermally hydrocarbonized porous silicon microparticles. Biomaterials, 2011, 32, 9089-9099.	11.4	71
43	Inhibition of Influenza A Virus Infection <i>in Vitro</i> by Saliphenylhalamide-Loaded Porous Silicon Nanoparticles. ACS Nano, 2013, 7, 6884-6893.	14.6	71
44	¹⁸ F-Labeled Modified Porous Silicon Particles for Investigation of Drug Delivery Carrier Distribution in Vivo with Positron Emission Tomography. Molecular Pharmaceutics, 2011, 8, 1799-1806.	4.6	65
45	Development of Porous Silicon Nanocarriers for Parenteral Peptide Delivery. Molecular Pharmaceutics, 2013, 10, 353-359.	4.6	65
46	Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regeneration. International Journal of Pharmaceutics, 2018, 536, 241-250.	5.2	65
47	Cellular interactions of surface modified nanoporous silicon particles. Nanoscale, 2012, 4, 3184.	5.6	63
48	Novel Delivery Systems for Improving the Clinical Use of Peptides. Pharmacological Reviews, 2015, 67, 541-561.	16.0	62
49	Nanostructured porous silicon microparticles enable sustained peptide (Melanotan II) delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77, 20-25.	4.3	61
50	Optical gas sensing properties of thermally hydrocarbonized porous silicon Bragg reflectors. Optics Express, 2009, 17, 5446.	3.4	60
51	Onâ€Chip Selfâ€Assembly of a Smart Hybrid Nanocomposite for Antitumoral Applications. Advanced Functional Materials, 2015, 25, 1488-1497.	14.9	60
52	Utilising thermoporometry to obtain new insights into nanostructured materials. Journal of Thermal Analysis and Calorimetry, 2011, 105, 811-821.	3.6	58
53	Fabrication and Characterization of Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & Interfaces, 2020, 12, 6899-6909.	10 Tf 50 8.0	107 Td (seba 57
54	Cyclodextrin-Modified Porous Silicon Nanoparticles for Efficient Sustained Drug Delivery and Proliferation Inhibition of Breast Cancer Cells. ACS Applied Materials & Interfaces, 2015, 7, 23197-23204.	8.0	55

#	Article	IF	CITATIONS
55	Gold Nanorods, DNA Origami, and Porous Silicon Nanoparticleâ€functionalized Biocompatible Double Emulsion for Versatile Targeted Therapeutics and Antibody Combination Therapy. Advanced Materials, 2016, 28, 10195-10203.	21.0	55
56	Nanostructured porous silicon in preclinical imaging: Moving from bench to bedside. Journal of Materials Research, 2013, 28, 152-164.	2.6	54
57	A prospective cancer chemo-immunotherapy approach mediated by synergistic CD326 targeted porous silicon nanovectors. Nano Research, 2015, 8, 1505-1521.	10.4	54
58	Biomimetic Engineering Using Cancer Cell Membranes for Designing Compartmentalized Nanoreactors with Organelle‣ike Functions. Advanced Materials, 2017, 29, 1605375.	21.0	54
59	Engineered Multifunctional Albuminâ€Decorated Porous Silicon Nanoparticles for FcRn Translocation of Insulin. Small, 2018, 14, e1800462.	10.0	53
60	Functionalization of Mesoporous Silicon Nanoparticles for Targeting and Bioimaging Purposes. Journal of Nanomaterials, 2012, 2012, 1-9.	2.7	52
61	Receptor-Mediated Surface Charge Inversion Platform Based on Porous Silicon Nanoparticles for Efficient Cancer Cell Recognition and Combination Therapy. ACS Applied Materials & Interfaces, 2017, 9, 10034-10046.	8.0	51
62	Cellular Internalization–Induced Aggregation of Porous Silicon Nanoparticles for Ultrasound Imaging and Proteinâ€Mediated Protection of Stem Cells. Small, 2019, 15, e1804332.	10.0	51
63	Physicochemical stability of high indomethacin payload ordered mesoporous silica MCM-41 and SBA-15 microparticles. International Journal of Pharmaceutics, 2011, 416, 242-51.	5.2	50
64	Quercetinâ€Based Modified Porous Silicon Nanoparticles for Enhanced Inhibition of Doxorubicinâ€Resistant Cancer Cells. Advanced Healthcare Materials, 2017, 6, 1601009.	7.6	49
65	Thermally Carbonized Porous Silicon and Its Recent Applications. Advanced Materials, 2018, 30, e1703819.	21.0	48
66	Microfluidic Nanoassembly of Bioengineered Chitosan-Modified FcRn-Targeted Porous Silicon Nanoparticles @ Hypromellose Acetate Succinate for Oral Delivery of Antidiabetic Peptides. ACS Applied Materials & Interfaces, 2018, 10, 44354-44367.	8.0	47
67	Close-loop dynamic nanohybrids on collagen-ark with <i>in situ</i> gelling transformation capability for biomimetic stage-specific diabetic wound healing. Materials Horizons, 2019, 6, 385-393.	12.2	46
68	Microfluidic Templated Mesoporous Silicon–Solid Lipid Microcomposites for Sustained Drug Delivery. ACS Applied Materials & Interfaces, 2013, 5, 12127-12134.	8.0	45
69	Nitric oxide-releasing porous silicon nanoparticles. Nanoscale Research Letters, 2014, 9, 333.	5.7	45
70	Oral hypoglycaemic effect of GLP-1 and DPP4 inhibitor based nanocomposites in a diabetic animal model. Journal of Controlled Release, 2016, 232, 113-119.	9.9	44
71	A Versatile Carbonic Anhydrase IX Targeting Ligand-Functionalized Porous Silicon Nanoplatform for Dual Hypoxia Cancer Therapy and Imaging. ACS Applied Materials & Interfaces, 2017, 9, 13976-13987.	8.0	44
72	Bioengineered Porous Silicon Nanoparticles@Macrophages Cell Membrane as Composite Platforms for Rheumatoid Arthritis. Advanced Functional Materials, 2018, 28, 1801355.	14.9	44

#	Article	IF	CITATIONS
73	Poly(methyl vinyl etherâ€ <i>alt</i> â€maleic acid)â€Functionalized Porous Silicon Nanoparticles for Enhanced Stability and Cellular Internalization. Macromolecular Rapid Communications, 2014, 35, 624-629.	3.9	42
74	Utilising thermoporometry to obtain new insights into nanostructured materials. Journal of Thermal Analysis and Calorimetry, 2011, 105, 823-830.	3.6	41
75	New times, new trends for ethionamide: In vitro evaluation of drug-loaded thermally carbonized porous silicon microparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 314-323.	4.3	37
76	Electro-optical porous silicon gas sensor with enhanced selectivity. Sensors and Actuators B: Chemical, 2010, 147, 100-104.	7.8	36
77	Humidity behavior of thermally carbonized porous silicon. Applied Surface Science, 2004, 222, 269-274.	6.1	35
78	Solid state transformations in consequence of electrospraying – A novel polymorphic form of piroxicam. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 89, 182-189.	4.3	35
79	Isomerization of α-Pinene Oxide Over Iron-Modified Zeolites. Topics in Catalysis, 2013, 56, 696-713.	2.8	33
80	Platelet Lysate-Modified Porous Silicon Microparticles for Enhanced Cell Proliferation in Wound Healing Applications. ACS Applied Materials & Interfaces, 2016, 8, 988-996.	8.0	33
81	Electrostatic Interaction on Loading of Therapeutic Peptide GLP-1 into Porous Silicon Nanoparticles. Langmuir, 2015, 31, 1722-1729.	3.5	32
82	Oligonucleotide delivery by chitosan-functionalized porous silicon nanoparticles. Nano Research, 2015, 8, 2033-2046.	10.4	32
83	Tablet preformulations of indomethacin-loaded mesoporous silicon microparticles. International Journal of Pharmaceutics, 2012, 422, 125-131.	5.2	31
84	Intracellular responsive dual delivery by endosomolytic polyplexes carrying DNA anchored porous silicon nanoparticles. Journal of Controlled Release, 2017, 249, 111-122.	9.9	31
85	Strong White Photoluminescence from Carbon-Incorporated Silicon Oxide Fabricated by Preferential Oxidation of Silicon in Nano-Structured Si:C Layer. Japanese Journal of Applied Physics, 2007, 46, L465-L467.	1.5	30
86	Confinement Effects on Drugs in Thermally Hydrocarbonized Porous Silicon. Langmuir, 2014, 30, 2196-2205.	3.5	30
87	Porous silicon micro- and nanoparticles for printed humidity sensors. Applied Physics Letters, 2012, 101, .	3.3	29
88	Cardiac Actions of a Small Molecule Inhibitor Targeting GATA4–NKX2-5 Interaction. Scientific Reports, 2018, 8, 4611.	3.3	29
89	Isomerization of β-pinene oxide over Sn-modified zeolites. Journal of Molecular Catalysis A, 2013, 366, 228-237.	4.8	28
90	Controlled Dissolution of Griseofulvin Solid Dispersions from Electrosprayed Enteric Polymer Micromatrix Particles: Physicochemical Characterization and <i>in Vitro</i> Evaluation. Molecular Pharmaceutics, 2015, 12, 2254-2264.	4.6	28

#	Article	IF	CITATIONS
91	In vitro assessment of biopolymer-modified porous silicon microparticles for wound healing applications. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 635-642.	4.3	25
92	Influence of Surface Chemistry on Ibuprofen Adsorption and Confinement in Mesoporous Silicon Microparticles. Langmuir, 2016, 32, 13020-13029.	3.5	25
93	Regenerative Electroless Etching of Silicon. Angewandte Chemie - International Edition, 2017, 56, 624-627.	13.8	25
94	Engineered antibody-functionalized porous silicon nanoparticles for therapeutic targeting of pro-survival pathway in endogenous neuroblasts after stroke. Biomaterials, 2020, 227, 119556.	11.4	23
95	Neonatal Fc receptor-targeted lignin-encapsulated porous silicon nanoparticles for enhanced cellular interactions and insulin permeation across the intestinal epithelium. Bioactive Materials, 2022, 9, 299-315.	15.6	23
96	Fabrication of Porous Silicon Based Humidity Sensing Elements on Paper. Journal of Sensors, 2015, 2015, 1-10.	1.1	21
97	Impact of Pore Size and Surface Chemistry of Porous Silicon Particles and Structure of Phospholipids on Their Interactions. ACS Biomaterials Science and Engineering, 2018, 4, 2308-2313.	5.2	21
98	Thermally promoted addition of undecylenic acid on thermally hydrocarbonized porous silicon optical reflectors. Nanoscale Research Letters, 2012, 7, 311.	5.7	20
99	Electrically isolated thermally carbonized porous silicon layer for humidity sensing purposes. Sensors and Actuators B: Chemical, 2008, 131, 627-632.	7.8	18
100	Selective Optical Response of Hydrolytically Stable Stratified Si Rugate Mirrors to Liquid Infiltration. ACS Applied Materials & Interfaces, 2014, 6, 2884-2892.	8.0	18
101	Injected nanoparticles: The combination of experimental systems to assess cardiovascular adverse effects. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 64-72.	4.3	17
102	Coherent anti-Stokes Raman scattering microscopy driving the future of loaded mesoporous silica imaging. Acta Biomaterialia, 2014, 10, 4870-4877.	8.3	17
103	Structural considerations on multistopband mesoporous silicon rugate filters prepared for gas sensing purposes. Optics Express, 2011, 19, 13291.	3.4	15
104	Optimization of a Wet Flue Gas Desulfurization Scrubber through Mathematical Modeling of Limestone Dissolution Experiments. Industrial & Engineering Chemistry Research, 2015, 54, 9783-9797.	3.7	15
105	A multifunctional nanocomplex for enhanced cell uptake, endosomal escape and improved cancer therapeutic effect. Nanomedicine, 2017, 12, 1401-1420.	3.3	15
106	Drug Delivery with Porous Silicon. , 2014, , 909-919.		13
107	Investigation of silicon nanoparticles produced by centrifuge chemical vapor deposition for applications in therapy and diagnostics. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 254-265.	4.3	13
108	Real time detection of photoreactivity in pharmaceutical solids and solutions with isothermal microcalorimetry. Pharmaceutical Research, 1999, 16, 368-373.	3.5	11

#	Article	IF	CITATIONS
109	Native and Complexed IGF-1: Biodistribution and Pharmacokinetics in Infantile Neuronal Ceroid Lipofuscinosis. Journal of Drug Delivery, 2012, 2012, 1-8.	2.5	11
110	Excitation effects and luminescence stability in porous SiO ₂ :C layers. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1015-1021.	1.8	11
111	Revisiting the dissolution kinetics of limestone - experimental analysis and modeling. Journal of Chemical Technology and Biotechnology, 2016, 91, 1517-1531.	3.2	11
112	The impact of porous silicon nanoparticles on human cytochrome P450 metabolism in human liver microsomes in vitro. European Journal of Pharmaceutical Sciences, 2017, 104, 124-132.	4.0	11
113	Preparation and biological evaluation of ethionamide-mesoporous silicon nanoparticles against Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 403-405.	2.2	11
114	Measuring electrostatic charging of powders on-line during surface adhesion. Journal of Electrostatics, 2018, 93, 53-57.	1.9	11
115	Porous Silicon as a Platform for Radiation Theranostics Together with a Novel RIB-Based Radiolanthanoid. Contrast Media and Molecular Imaging, 2019, 2019, 1-9.	0.8	11
116	Influence of Cell Membrane Wrapping on the Cellâ^'Porous Silicon Nanoparticle Interactions. Advanced Healthcare Materials, 2020, 9, e2000529.	7.6	11
117	Tandemâ€Massâ€Tag Based Proteomic Analysis Facilitates Analyzing Critical Factors of Porous Silicon Nanoparticles in Determining Their Biological Responses under Diseased Condition. Advanced Science, 2020, 7, 2001129.	11.2	11
118	A Novel Method of Quantifying the u-Shaped Pores in SBA-15. Journal of Physical Chemistry C, 2009, 113, 20349-20354.	3.1	10
119	In Vitro Dissolution Methods for Hydrophilic and Hydrophobic Porous Silicon Microparticles. Pharmaceutics, 2011, 3, 315-325.	4.5	10
120	Nanocarriers and the delivered drug: Effect interference due to intravenous administration. European Journal of Pharmaceutical Sciences, 2014, 63, 96-102.	4.0	10
121	Hybrid red blood cell membrane coated porous silicon nanoparticles functionalized with cancer antigen induce depletion of T cells. RSC Advances, 2020, 10, 35198-35205.	3.6	10
122	Ferromagnetism induced in ZnO nanorods by morphology changes under a nitrogen–carbon atmosphere. RSC Advances, 2013, 3, 12945.	3.6	9
123	Solvent-free "green―amidation of stearic acid for synthesis of biologically active alkylamides over iron supported heterogeneous catalysts. Applied Catalysis A: General, 2017, 542, 350-358.	4.3	9
124	Synthesis and Characterization of Novel Catalytic Materials Using Industrial Slag: Influence of Alkaline Pretreatment, Synthesis Time and Temperature. Topics in Catalysis, 2019, 62, 738-751.	2.8	9
125	Preparation and in vivo evaluation of red blood cell membrane coated porous silicon nanoparticles implanted with 155Tb. Nuclear Medicine and Biology, 2020, 84-85, 102-110.	0.6	9
126	Dual-capillary electroencapsulation of mesoporous silicon drug carrier particles for controlled oral drug delivery. Journal of Electrostatics, 2012, 70, 428-437.	1.9	8

#	Article	IF	CITATIONS
127	One-step measurements of powder resistivity as a function of relative humidity and its effect on charging. Journal of Electrostatics, 2015, 76, 78-82.	1.9	8
128	Hierarchical Nanostructuring of Porous Silicon with Electrochemical and Regenerative Electroless Etching. ACS Nano, 2019, 13, 13056-13064.	14.6	8
129	One-step method for measuring the effect of humidity on powder resistivity. Journal of Electrostatics, 2013, 71, 159-164.	1.9	7
130	Influence of relative humidity on the electrostatic charging of lactose powder mixed with salbutamol sulphate. Journal of Electrostatics, 2017, 88, 201-206.	1.9	7
131	The electrical resistivity and relative permittivity of binary powder mixtures. Powder Technology, 2018, 325, 228-233.	4.2	7
132	Enhanced Photoluminescence in Acetylene-Treated ZnO Nanorods. Nanoscale Research Letters, 2016, 11, 413.	5.7	6
133	Multistage signal-interactive nanoparticles improve tumor targeting through efficient nanoparticle-cell communications. Cell Reports, 2021, 35, 109131.	6.4	6
134	Nano-Order Structural Analysis of White Light-Emitting Silicon Oxide Prepared by Successive Thermal Carbonization/Oxidation of the Porous Silicon. Materials Science Forum, 2007, 561-565, 1127-1130.	0.3	5
135	Drug Delivery: Thiolation and Cell-Penetrating Peptide Surface Functionalization of Porous Silicon Nanoparticles for Oral Delivery of Insulin (Adv. Funct. Mater. 20/2016). Advanced Functional Materials, 2016, 26, 3374-3374.	14.9	5
136	Influence of parallel nozzle electroencapsulation parameters on microcapsule properties – A case study using the Taguchi robust design method. Journal of Electrostatics, 2017, 90, 91-105.	1.9	5
137	Sequential Antifouling Surface for Efficient Modulation of the Nanoparticle–Cell Interactions in Proteinâ€Rich Environments. Advanced Therapeutics, 2018, 1, 1800013.	3.2	5
138	Transformation of industrial steel slag with different structure-modifying agents for synthesis of catalysts. Catalysis Today, 2020, 355, 768-780.	4.4	5
139	Ultrasound irradiation as an effective tool in synthesis of the slag-based catalysts for carboxymethylation. Ultrasonics Sonochemistry, 2021, 73, 105503.	8.2	5
140	Quantitative Analysis of Porous Silicon Nanoparticles Functionalization by ¹ H NMR. ACS Biomaterials Science and Engineering, 2022, 8, 4132-4139.	5.2	5
141	Regenerative Electroless Etching of Silicon. Angewandte Chemie, 2017, 129, 639-642.	2.0	4
142	Nanohybrids: Multifunctional Nanohybrid Based on Porous Silicon Nanoparticles, Gold Nanoparticles, and Acetalated Dextran for Liver Regeneration and Acute Liver Failure Theranostics (Adv. Mater. 24/2018). Advanced Materials, 2018, 30, 1870168.	21.0	4
143	Colonic Delivery of αâ€Linolenic Acid by an Advanced Nutrient Delivery System Prolongs Glucagonâ€Like Peptideâ€1 Secretion and Inhibits Food Intake in Mice. Molecular Nutrition and Food Research, 2022, 66, e2100978.	3.3	4
144	Calorimetric determination of dissolution enthalpy with a novel flow-through method. Journal of Pharmaceutical and Biomedical Analysis, 2010, 53, 821-825.	2.8	3

#	Article	IF	CITATIONS
145	Processing of pharmaceutical materials by electrospraying under reduced pressure. Drug Development and Industrial Pharmacy, 2015, 41, 116-123.	2.0	3
146	A coaxial probe with a vertically split outer sensor for charge and dimensional measurement of a passing object. Sensors and Actuators A: Physical, 2016, 244, 44-49.	4.1	3
147	Ultrasonic Power to Enhance Limestone Dissolution in the Wet Flue Gas Desulfurization Process. Modeling and Results from Stepwise Titration Experiments. ChemEngineering, 2018, 2, 53.	2.4	3
148	Drug Delivery with Porous Silicon. , 2018, , 1377-1390.		3
149	A coaxial induction probe for measuring the charge, size and distance of a passing object. Journal of Electrostatics, 2015, 77, 94-100.	1.9	2
150	Automatic methodologies to perform loading and release assays of anticancer drugs from mesoporous silicon nanoparticles. Talanta, 2019, 196, 277-283.	5.5	2
151	Drug Delivery with Porous Silicon. , 2016, , 1-14.		2
152	Characterization of Porous Silicon by Calorimetry. , 2014, , 449-454.		0
153	Characterization of Porous Silicon by Calorimetry. , 2014, , 1-6.		0
154	Drug Delivery with Porous Silicon. , 2014, , 1-11.		0
155	Electroencapsulation of Porous Silicon. , 2014, , 665-669.		0
156	Electroencapsulation of Porous Silicon. , 2018, , 997-1001.		0
157	Characterization of Porous Silicon by Calorimetry. , 2018, , 621-626.		0
158	Folic acid-mesoporous silicon nanoparticles enhance the anticancer activity of the p73-activating small molecule LEM2. International Journal of Pharmaceutics, 2022, 624, 121959.	5.2	0