Eric Dickinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/106308/publications.pdf

Version: 2024-02-01

437 papers

29,161 citations

88 h-index 153

g-index

449 all docs 449 docs citations

449 times ranked 11462 citing authors

#	Article	IF	CITATIONS
1	The perfect hydrocolloid stabilizer: Imagination versus reality. Food Hydrocolloids, 2021, 117, 106696.	5.6	21
2	Advances in food emulsions and foams: reflections on research in the neo-Pickering era. Current Opinion in Food Science, 2020, 33, 52-60.	4.1	63
3	Sustainable food-grade Pickering emulsions stabilized by plant-based particles. Current Opinion in Colloid and Interface Science, 2020, 49, 69-81.	3.4	208
4	Strategies to control and inhibit the flocculation of protein-stabilized oil-in-water emulsions. Food Hydrocolloids, 2019, 96, 209-223.	5.6	140
5	Particle-based stabilization of water-in-water emulsions containing mixed biopolymers. Trends in Food Science and Technology, 2019, 83, 31-40.	7.8	66
6	Microrheology and microstructure of water-in-water emulsions containing sodium caseinate and locust bean gum. Food and Function, 2018, 9, 2840-2852.	2.1	14
7	Hydrocolloids acting as emulsifying agents – How do they do it?. Food Hydrocolloids, 2018, 78, 2-14.	5.6	149
8	On the road to understanding and control of creaminess perception in food colloids. Food Hydrocolloids, 2018, 77, 372-385.	5.6	70
9	Biopolymer-based particles as stabilizing agents for emulsions and foams. Food Hydrocolloids, 2017, 68, 219-231.	5.6	323
10	Double Emulsions Relevant to Food Systems: Preparation, Stability, and Applications. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 532-555.	5.9	274
11	Exploring the frontiers of colloidal behaviour where polymers and particles meet. Food Hydrocolloids, 2016, 52, 497-509.	5.6	75
12	Microgels â€" An alternative colloidal ingredient for stabilization of food emulsions. Trends in Food Science and Technology, 2015, 43, 178-188.	7.8	163
13	Structuring of colloidal particles at interfaces and the relationship to food emulsion and foam stability. Journal of Colloid and Interface Science, 2015, 449, 38-45.	5.0	75
14	Colloids in Food: Ingredients, Structure, and Stability. Annual Review of Food Science and Technology, 2015, 6, 211-233.	5.1	174
15	First-order phase transition during displacement of amphiphilic biomacromolecules from interfaces by surfactant molecules. Journal of Physics Condensed Matter, 2014, 26, 464109.	0.7	5
16	Understanding Food Structures. , 2014, , 3-49.		9
17	Structure and rheology of colloidal particle gels: Insight from computer simulation. Advances in Colloid and Interface Science, 2013, 199-200, 114-127.	7.0	62
18	Stabilising emulsionâ€based colloidal structures with mixed food ingredients. Journal of the Science of Food and Agriculture, 2013, 93, 710-721.	1.7	232

#	Article	IF	CITATIONS
19	Interfacial Study of Class II Hydrophobin and Its Mixtures with Milk Proteins: Relationship to Bubble Stability. Journal of Agricultural and Food Chemistry, 2013, 61, 1554-1562.	2.4	18
20	Use of nanoparticles and microparticles in the formation and stabilization of food emulsions. Trends in Food Science and Technology, 2012, 24, 4-12.	7.8	474
21	Microstructure and elastic modulus of mixed gels of gelatin+oxidized starch: Effect of pH. Food Hydrocolloids, 2012, 26, 286-292.	5.6	17
22	Emulsion gels: The structuring of soft solids with protein-stabilized oil droplets. Food Hydrocolloids, 2012, 28, 224-241.	5.6	569
23	Mixed biopolymers at interfaces: Competitive adsorption and multilayer structures. Food Hydrocolloids, 2011, 25, 1966-1983.	5.6	306
24	Double Emulsions Stabilized by Food Biopolymers. Food Biophysics, 2011, 6, 1-11.	1.4	355
25	Food colloids research: Historical perspective and outlook. Advances in Colloid and Interface Science, 2011, 165, 7-13.	7.0	35
26	Simple statistical thermodynamic model of the heteroaggregation and gelation of dispersions and emulsions. Journal of Colloid and Interface Science, 2011, 356, 196-202.	5.0	27
27	Flocculation of protein-stabilized oil-in-water emulsions. Colloids and Surfaces B: Biointerfaces, 2010, 81, 130-140.	2.5	351
28	On the kinetics of acid sodium caseinate gelation using particle tracking to probe the microrheology. Journal of Colloid and Interface Science, 2010, 345, 278-285.	5.0	52
29	Food emulsions and foams: Stabilization by particles. Current Opinion in Colloid and Interface Science, 2010, 15, 40-49.	3.4	934
30	A Theoretical Self-Consistent Field Study of Mixed Interfacial Biopolymer Films. ACS Symposium Series, 2009, , 46-66.	0.5	2
31	Light scattering study of sodium caseinate+dextran sulfate in aqueous solution: Relationship to emulsion stability. Food Hydrocolloids, 2009, 23, 629-639.	5.6	39
32	Microstructure and rheology of phase-separated gels of gelatin+oxidized starch. Food Hydrocolloids, 2009, 23, 1081-1088.	5.6	44
33	Brewster angle microscopy of adsorbed protein films at air–water and oil–water interfaces after compression, expansion and heat processing. Food Hydrocolloids, 2009, 23, 1190-1197.	5.6	22
34	Bubble stability in the presence of oil-in-water emulsion droplets: Influence of surface shear versus dilatational rheology. Food Hydrocolloids, 2009, 23, 1198-1208.	5.6	51
35	Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids, 2009, 23, 1473-1482.	5.6	1,003
36	Food Colloids, Le Mans, April 2008. Food Hydrocolloids, 2009, 23, 1073.	5.6	1

#	Article	IF	CITATIONS
37	Surface energy investigation of chocolate adhesion to solid mould materials. Journal of Food Engineering, 2009, 92, 217-225.	2.7	34
38	Mixed Layers of Sodium Caseinate + Dextran Sulfate: Influence of Order of Addition to Oilâ^'Water Interface. Langmuir, 2009, 25, 10026-10037.	1.6	108
39	Interfacial Structuring in a Phase-Separating Mixed Biopolymer Solution Containing Colloidal Particles. Langmuir, 2009, 25, 1300-1305.	1.6	87
40	Hydrocolloids and emulsion stability., 2009,, 23-49.		22
41	High-sugar-content acid-induced caseinate gels and emulsion gels: Influencea of low-methoxyl pecting. Special Publication - Royal Society of Chemistry, 2009, , 461-474.	0.0	1
42	Stability of emulsions containing sodium caseinate and dextran sulfate: Relationship to complexation in solution. Food Hydrocolloids, 2008, 22, 647-659.	5.6	181
43	Development of a model whipped cream: Effects of emulsion droplet liquid/solid character and added hydrocolloid. Food Hydrocolloids, 2008, 22, 690-699.	5.6	50
44	Interfacial structure and stability of food emulsions as affected by protein–polysaccharide interactions. Soft Matter, 2008, 4, 932.	1.2	482
45	Whipped cream-like textured systems based on acidified caseinate-stabilized oil-in-water emulsions. International Dairy Journal, 2008, 18, 1011-1021.	1.5	35
46	Mixed protein–polysaccharide interfacial layers: a self consistent field calculation study. Faraday Discussions, 2008, 139, 161.	1.6	28
47	Morphological Changes in Adsorbed Protein Films at the Oilâ^'Water Interface Subjected to Compression, Expansion, and Heat Processing. Langmuir, 2008, 24, 1979-1988.	1.6	23
48	Interactions between Adsorbed Layers of \hat{l}_{\pm} _{S1} -Casein with Covalently Bound Side Chains: A Self-Consistent Field Study. Biomacromolecules, 2008, 9, 3188-3200.	2.6	22
49	Colloidal systems in foods containing droplets and bubbles. , 2007, , 153-184.		4
50	Synergistic stabilization of heat-treated emulsions containing mixtures of milk proteins. International Dairy Journal, 2007, 17, 95-103.	1.5	17
51	Fractal-Type Particle Gel Formed from Gelatin + Starch Solution. Langmuir, 2007, 23, 4646-4650.	1.6	27
52	Morphological Changes in Adsorbed Protein Films at the Airâ-'Water Interface Subjected to Large Area Variations, as Observed by Brewster Angle Microscopy. Langmuir, 2007, 23, 5005-5013.	1.6	21
53	Stabilization of aerated sugar particle systems at high sugar particle concentrations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301, 289-300.	2.3	15
54	Whey protein–maltodextrin conjugates as emulsifying agents: An alternative to gum arabic. Food Hydrocolloids, 2007, 21, 607-616.	5.6	260

#	Article	IF	CITATIONS
55	Protein-based emulsion gel: Effects of interfacial properties and temperature. Special Publication - Royal Society of Chemistry, 2007, , 384-391.	0.0	O
56	Influence of high pressure processing on protein-polysaccharide interactions in emulsions. Special Publication - Royal Society of Chemistry, 2007, , 315-322.	0.0	1
57	Particle Tracking Using Confocal Microscopy to Probe the Microrheology in a Phase-Separating Emulsion Containing Nonadsorbing Polysaccharide. Langmuir, 2006, 22, 4710-4719.	1.6	105
58	Colloid science of mixed ingredients. Soft Matter, 2006, 2, 642.	1.2	160
59	Stabilization of carbon dioxide-in-water emulsions by proteins. Chemical Communications, 2006, , 1410.	2.2	4
60	Surface Structure Smoothing Effect of Polysaccharide on a Heat-Set Protein Particle Gel. Langmuir, 2006, 22, 8873-8880.	1.6	29
61	Acidified sodium caseinate emulsion foams containing liquid fat: A comparison with whipped cream. LWT - Food Science and Technology, 2006, 39, 225-234.	2.5	73
62	Interfacial Particles in Food Emulsions and Foams., 2006,, 298-327.		15
63	Structure formation in casein-based gels, foams, and emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 288, 3-11.	2.3	143
64	Microstructure of \hat{I}^2 -lactoglobulin-stabilized emulsions containing non-ionic surfactant and excess free protein: Influence of heating. Journal of Colloid and Interface Science, 2006, 296, 332-341.	5.0	45
65	Influence of Ionic Surfactants on the Microstructure of Heat-Set \hat{I}^2 -Lactoglobulin-Stabilized Emulsion Gels. Food Biophysics, 2006, 1, 133-143.	1.4	13
66	Effect of thickeners on the coalescence of protein-stabilized air bubbles undergoing a pressure drop. Food Hydrocolloids, 2006, 20, 114-123.	5.6	18
67	Perception of creaminess of model oil-in-water dairy emulsions: Influence of the shear-thinning nature of a viscosity-controlling hydrocolloid. Food Hydrocolloids, 2006, 20, 839-847.	5.6	91
68	Molecular Dynamics Simulation of Competitive Adsorption at a Planar Fluid Interface., 2005,, 301-311.		0
69	Properties of Adsorbed Layers in Emulsions Containing a Mixture of Caseinate and Gelatin. , 2005, , 86-99.		3
70	Evidence for Protein–Polysaccharide Complex Formation as a Result of Dry-heating of Mixtures. , 2005, , 157-160.		1
71	Microstructural evolution of viscoelastic emulsions stabilised by sodium caseinate and xanthan gum. Journal of Colloid and Interface Science, 2005, 284, 714-728.	5.0	152
72	Brownian dynamics simulation of adsorbed layers of interacting particles subjected to large extensional deformation. Journal of Colloid and Interface Science, 2005, 287, 401-414.	5.0	29

#	Article	IF	Citations
73	Microstructure of acid-induced caseinate gels containing sucrose: Quantification from confocal microscopy and image analysis. Colloids and Surfaces B: Biointerfaces, 2005, 42, 211-217.	2.5	69
74	Surface Texture of Particle Gels. Chemical Engineering Research and Design, 2005, 83, 866-870.	2.7	6
75	Instability and structural change in an aerated system containing egg albumen and invert sugar. Food Hydrocolloids, 2005, 19, 111-121.	5.6	83
76	Understanding temperature-sensitive caseinate emulsions: new information from diffusing wave spectroscopy. Food Hydrocolloids, 2005, 19, 279-287.	5.6	19
77	Interactions in dispersions of sugar particles in food oils: influence of emulsifier. Food Hydrocolloids, 2005, 19, 513-520.	5.6	31
78	Factors affecting the perception of creaminess of oil-in-water emulsions. Food Hydrocolloids, 2005, 19, 521-526.	5.6	115
79	Confocal microscopy of heat-induced aggregation and gelation of ?-lactoglobulin in presence of non-ionic surfactant. Food Hydrocolloids, 2005, 19, 625-633.	5.6	27
80	Colloidal Properties of Model Oil-in-Water Food Emulsions Stabilized Separately by α s1 -Casein, β-Casein and κ-Casein., 2005, , 40-51.		3
81	Competitive Adsorption in Protein-stabilized Emulsions Containing Oil-soluble and Water-soluble Surfactants., 2005,, 312-322.		1
82	Coalescence of Protein-Stabilized Bubbles Undergoing Expansion at a Simultaneously Expanding Planar Airâ^'Water Interface. Langmuir, 2005, 21, 4622-4630.	1.6	21
83	Protein–Polysaccharide Interactions in Food Colloids. , 2005, , 77-93.		9
84	Using Self-Consistent-Field Theory to Understand Enhanced Steric Stabilization by Casein-Like Copolymers at Low Surface Coverage in Mixed Protein Layers. Biomacromolecules, 2005, 6, 3018-3029.	2.6	23
85	A Statistical Model of the Adsorption of Protein–Polysaccharide Complexes. , 2005, , 161-164.		0
86	Crystallization in Simple Paraffins and Monoacid Saturated Triacylglycerols Dispersed in Water. , 2005, , 243-249.		0
87	Calcium Induced Flocculation of Emulsions Containing Adsorbed Phosvitin or \hat{I}^2 -Casein. , 2005, , 66-70.		0
88	Surface phase separation in complex mixed adsorbing systems: An interface-bulk coupling effect. Journal of Chemical Physics, 2004, 121, 3775-3783.	1.2	5
89	Rheology of Protein Gels and Protein-Stabilized Emulsion Gels Cross-Linked with Transglutaminase. , 2004, , 326-334.		0
90	Effects of low-methoxyl amidated pectin and ionic calcium on rheology and microstructure of acid-induced sodium caseinate gels. Food Hydrocolloids, 2004, 18, 271-281.	5.6	89

#	Article	IF	CITATIONS
91	Stability and rheology of emulsions containing sodium caseinate: combined effects of ionic calcium and alcohol. Journal of Colloid and Interface Science, 2004, 274, 673-686.	5.0	51
92	Competitive adsorption of proteins and low-molecular-weight surfactants: computer simulation and microscopic imaging. Advances in Colloid and Interface Science, 2004, 107, 27-49.	7.0	176
93	Depletion flocculation of caseinate-stabilised emulsions: what is the optimum size of the non-adsorbed protein nano-particles?. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 238, 71-81.	2.3	68
94	Inhibition of heat-induced aggregation of a \hat{l}^2 -lactoglobulin-stabilized emulsion by very small additions of casein. Colloids and Surfaces B: Biointerfaces, 2004, 39, 23-30.	2.5	42
95	Factors Controlling the Formation and Stability of Air Bubbles Stabilized by Partially Hydrophobic Silica Nanoparticles. Langmuir, 2004, 20, 8517-8525.	1.6	269
96	Computer Simulation of the Microstructure of a Nanoparticle Monolayer Formed under Interfacial Compression. Langmuir, 2004, 20, 6096-6099.	1.6	21
97	Gelation of \hat{l}^1 -Carrageenan and Micellar Casein Mixtures under High Hydrostatic Pressure. Journal of Agricultural and Food Chemistry, 2004, 52, 1705-1714.	2.4	20
98	Heat-induced aggregation of milk protein-stabilized emulsions: sensitivity to processing and composition. International Dairy Journal, 2004, 14, 635-645.	1.5	84
99	Influence of Protein–Polysaccharide Interactions on the Rheology of Emulsions. , 2004, , 258-265.		0
100	Aggregation Processes, Particle Interactions, and Colloidal Structure., 2004, , 107-126.		1
101	Effect of hydrocolloids on emulsion stability. Special Publication - Royal Society of Chemistry, 2004, , 394-404.	0.0	5
102	$\hat{l}^2\text{-Casein}$ Adsorbed Layer Structures Predicted by Self-Consistent-Field Modelling: Comparison with Experiment. , 2004, , 217-228.		0
103	Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids, 2003, 17, 25-39.	5.6	1,502
104	Stability and rheology of emulsions containing sodium caseinate: combined effects of ionic calcium and non-ionic surfactant. Food Hydrocolloids, 2003, 17, 211-220.	5.6	90
105	Disproportionation of clustered protein-stabilized bubbles at planar air–water interfaces. Journal of Colloid and Interface Science, 2003, 263, 47-58.	5.0	36
106	On the effect of calcium ions on the sticking behaviour of casein-coated particles in shear flow. Colloids and Surfaces B: Biointerfaces, 2003, 27, 123-131.	2.5	6
107	Defining the conditions for heat-induced gelation of a caseinate-stabilized emulsion. Colloids and Surfaces B: Biointerfaces, 2003, 29, 89-97.	2.5	17
108	Effect of sucrose on molecular and interaction parameters of sodium caseinate in aqueous solution: relationship to protein gelation. Colloids and Surfaces B: Biointerfaces, 2003, 31, 31-46.	2.5	58

#	Article	IF	CITATIONS
109	Emulsifying properties of whey protein–dextran conjugates at low pH and different salt concentrations. Colloids and Surfaces B: Biointerfaces, 2003, 31, 125-132.	2.5	184
110	Coalescence stability of gas bubbles subjected to rapid pressure change at a planar air/water interface. Colloids and Surfaces B: Biointerfaces, 2003, 30, 237-248.	2.5	17
111	Growth and aggregation of surfactant islands during the displacement of an adsorbed protein monolayer: a Brownian dynamics simulation study. Colloids and Surfaces B: Biointerfaces, 2003, 31, 149-157.	2.5	21
112	Outstanding Stability of Particle-Stabilized Bubbles. Langmuir, 2003, 19, 3106-3108.	1.6	293
113	Do Mixtures of Proteins Phase Separate at Interfaces?. Langmuir, 2003, 19, 1923-1926.	1.6	18
114	Growth of Surfactant Domains in Protein Films. Langmuir, 2003, 19, 6032-6038.	1.6	49
115	Thermoreversible gelation of caseinate-stabilized emulsions at around body temperature. International Dairy Journal, 2003, 13, 679-684.	1.5	24
116	Interaction of micellar casein andi-Carrageenan: Influence of high pressure. High Pressure Research, 2003, 23, 71-75.	0.4	3
117	High-Pressure-Induced Rheological Changes of Low-Methoxyl Pectin plus Micellar Casein Mixtures. Journal of Agricultural and Food Chemistry, 2002, 50, 3559-3565.	2.4	23
118	Influence of High-pressure Treatment on Gelation of Skim Milk Powder+Low Methoxyl Pectin Dispersions. High Pressure Research, 2002, 22, 643-647.	0.4	8
119	Technique for Studying the Effects of Rapid Surface Expansion on Bubble Stability. Langmuir, 2002, 18, 5007-5014.	1.6	22
120	Emulsion stabilizing properties of depolymerized pectin. Food Hydrocolloids, 2002, 16, 249-256.	5.6	190
121	Effect of sugars on the rheological properties of acid caseinate-stabilized emulsion gels. Food Hydrocolloids, 2002, 16, 321-331.	5.6	70
122	Rheology of acid-induced sodium caseinate gels containing added gelatin. Food Hydrocolloids, 2002, 16, 619-623.	5.6	30
123	Kinetics of Disproportionation of Air Bubbles beneath a Planar Air–Water Interface Stabilized by Food Proteins. Journal of Colloid and Interface Science, 2002, 252, 202-213.	5.0	100
124	Orthokinetic destabilization of emulsions by saturated and unsaturated monoglycerides. International Dairy Journal, 2001, $11,827-836$.	1.5	73
125	Milk protein interfacial layers and the relationship to emulsion stability and rheology. Colloids and Surfaces B: Biointerfaces, 2001, 20, 197-210.	2.5	491
126	Food Colloids 2000 â€" Fundamentals of Formulation. Colloids and Surfaces B: Biointerfaces, 2001, 21, 1.	2.5	6

#	Article	IF	CITATIONS
127	Sticking of protein-coated particles in a shear field. Colloids and Surfaces B: Biointerfaces, 2001, 22, 237-244.	2.5	10
128	Analysis of Light Scattering Data on the Calcium Ion Sensitivity of Caseinate Solution Thermodynamics: Relationship to Emulsion Flocculation. Journal of Colloid and Interface Science, 2001, 239, 87-97.	5.0	66
129	On Simulating Colloids by Dissipative Particle Dynamics: Issues and Complications. Journal of Colloid and Interface Science, 2001, 242, 106-109.	5.0	47
130	Aggregation in a concentrated model protein system: a mesoscopic simulation of \hat{l}^2 -casein self-assembly. Food Hydrocolloids, 2001, 15, 107-115.	5.6	13
131	Influence of sugars on high-pressure induced gelation of skim milk dispersions. Food Hydrocolloids, 2001, 15, 315-319.	5.6	31
132	Influence of transglutaminase treatment on the thermoreversible gelation of gelatin. Food Hydrocolloids, 2001, 15, 271-276.	5.6	146
133	Milk protein adsorbed layers and the relationship to emulsion stability and rheology. Studies in Surface Science and Catalysis, 2001, , 973-978.	1.5	4
134	Ultrasonic studies of the development of flocculation in mixed sodium caseinate and Tween 20 emulsions., 2001,, 132-135.		1
135	Emulsifying properties of ovalbumin in mixtures with sulphated polysaccharides: effects of pH, ionic strength, heat and high-pressure treatment. Journal of the Science of Food and Agriculture, 2000, 80, 1219-1229.	1.7	66
136	Determination of Interparticle Forces by Colloidal Particle Scattering: A Simulation Study. Journal of Colloid and Interface Science, 2000, 223, 273-284.	5.0	12
137	Structure and Rheology of Simulated Gels Formed from Aggregated Colloidal Particles. Journal of Colloid and Interface Science, 2000, 225, 2-15.	5.0	109
138	Creaming and Rheology of Oil-in-Water Emulsions Containing Sodium Dodecyl Sulfate and Sodium Caseinate. Journal of Colloid and Interface Science, 2000, 224, 148-154.	5.0	61
139	Simulation of Colloidal Particle Scattering: Sensitivity to Attractive Forces. Journal of Colloid and Interface Science, 2000, 225, 367-377.	5.0	12
140	Influence of high pressure processing on protein solutions and emulsions. Current Opinion in Colloid and Interface Science, 2000, 5, 182-187.	3.4	115
141	Influence of high-pressure treatment on β-lactoglobulin–pectin associations in emulsions and gels. Food Hydrocolloids, 2000, 14, 365-376.	5.6	42
142	Influence of high pressure on interactions of 11S globulin Vicia faba with \hat{l}^1 -carrageenan in bulk solution and at interfaces. Food Hydrocolloids, 2000, 14, 551-560.	5.6	37
143	Shear stability of sodium caseinate emulsions containing monoglyceride and triglyceride crystals. Food Hydrocolloids, 2000, 14, 145-153.	5. 6	106
144	Mechanical Properties and Microstructure of Heat-set Whey Protein Emulsion Gels: Effect of Emulsifiers. LWT - Food Science and Technology, 2000, 33, 299-307.	2.5	76

#	Article	IF	Citations
145	Effect of high-pressure on surface behaviour of adsorbed films formed from mixtures of sulfated polysaccharides with various proteins. Innovative Food Science and Emerging Technologies, 2000, 1, 177-185.	2.7	12
146	On the temperature reversibility of the viscoelasticity of acid-induced sodium caseinate emulsion gels. International Dairy Journal, 2000, 10, 541-549.	1.5	37
147	Interfacial Shear Rheology of Aged and Heat-Treated Î ² -Lactoglobulin Films:Â Displacement by Nonionic Surfactant. Journal of Agricultural and Food Chemistry, 2000, 48, 1491-1497.	2.4	112
148	Dynamic colloidal interactions between protein-stabilised particles â€" experiment and simulation. Physical Chemistry Chemical Physics, 2000, 2, 3861-3869.	1.3	14
149	Simulation and Experiments on Colloidal Particle Capture in a Shear Field. Langmuir, 2000, 16, 9784-9791.	1.6	10
150	Computer Simulation of Diffusing-Wave Spectroscopy of Colloidal Dispersions and Particle Gels. Langmuir, 2000, 16, 5856-5863.	1.6	3
151	Emulsifying properties of ovalbumin in mixtures with sulphated polysaccharides: effects of pH, ionic strength, heat and highâ€pressure treatment. Journal of the Science of Food and Agriculture, 2000, 80, 1219-1229.	1.7	1
152	MODELLING OF MILK PROTEIN GELS BY BROWNIAN DYNAMICS SIMULATION OF AGGREGATED PARTICLE NETWORKS. , 2000, , .		0
153	Ostwald ripening of protein-stabilized emulsions: effect of transglutaminase crosslinking. Colloids and Surfaces B: Biointerfaces, 1999, 12, 139-146.	2.5	54
154	Influence of ionic calcium on stability of sodium caseinate emulsions. Colloids and Surfaces B: Biointerfaces, 1999, 12, 203-212.	2.5	57
155	Effect of surface character of filler particles on rheology of heat-set whey protein emulsion gels. Colloids and Surfaces B: Biointerfaces, 1999, 12, 373-381.	2.5	121
156	Adsorbed protein layers at fluid interfaces: interactions, structure and surface rheology. Colloids and Surfaces B: Biointerfaces, 1999, 15, 161-176.	2.5	535
157	Complexes of bovine serum albumin with sulphated polysaccharides: effects of pH, ionic strength and high pressure treatment. Food Chemistry, 1999, 64, 303-310.	4.2	112
158	Effect of monoglycerides and diglycerol-esters on viscoelasticity of heat-set whey protein emulsion gels. International Journal of Food Science and Technology, 1999, 34, 493-501.	1.3	35
159	RHEOLOGY OF ACID-INDUCED SODIUM CASEINATE STABILIZED EMULSION GELS. Journal of Texture Studies, 1999, 30, 377-396.	1.1	72
160	Pore size in model particle gels. Molecular Physics, 1999, 96, 259-264.	0.8	14
161	Interactions of ovalbumin with sulphated polysaccharides: effects of pH, ionic strength, heat and high pressure treatment. Food Hydrocolloids, 1999, 13, 81-88.	5.6	68
162	A thermoreversible emulsion gel based on sodium caseinate. Food Hydrocolloids, 1999, 13, 285-289.	5.6	46

#	Article	IF	Citations
163	Interfacial ageing effect on the rheology of a heat-set protein emulsion gel. Food Hydrocolloids, 1999, 13, 363-369.	5.6	35
164	Emulsifying behaviour of 11S globulin Vicia faba in mixtures with sulphated polysaccharides: comparison of thermal and high-pressure treatments. Food Hydrocolloids, 1999, 13, 425-435.	5.6	80
165	Stability of Emulsions Containing Both Sodium Caseinate and Tween 20. Journal of Colloid and Interface Science, 1999, 212, 466-473.	5.0	88
166	Brownian Dynamics Simulation of the Displacement of a Protein Monolayer by Competitive Adsorption. Langmuir, 1999, 15, 8344-8348.	1.6	55
167	Brownian dynamics simulation of a bonded network of reversibly adsorbed particles: Towards a model of protein adsorbed layers. Physical Chemistry Chemical Physics, 1999, 1, 2141-2147.	1.3	32
168	Caseins in emulsions: interfacial properties and interactions. International Dairy Journal, 1999, 9, 305-312.	1.5	189
169	Influence of Competitive Adsorption on Flocculation and Rheology of High-Pressure-Treated Milk Protein-Stabilized Emulsions. Journal of Agricultural and Food Chemistry, 1999, 47, 25-30.	2.4	38
170	HEAT-SET WHEY PROTEIN EMULSION GELS: ROLE OF ACTIVE AND INACTIVE FILLER PARTICLES. Journal of Dispersion Science and Technology, 1999, 20, 197-213.	1.3	169
171	Pore size in model particle gels. Molecular Physics, 1999, 96, 259-264.	0.8	2
172	VISCOELASTIC PROPERTIES OF HEAT-SET WHEY PROTEIN EMULSION GELS. Journal of Texture Studies, 1998, 29, 285-304.	1.1	126
173	Salt stability of casein emulsions. Food Hydrocolloids, 1998, 12, 227-235.	5.6	80
174	Influence of \hat{I}^2 -carrageenan on the properties of a protein-stabilized emulsion. Food Hydrocolloids, 1998, 12, 417-423.	5.6	73
175	Effect of high-methoxy pectin on properties of casein-stabilized emulsions. Food Hydrocolloids, 1998, 12, 425-432.	5.6	91
176	Influence of Alcohol on Stability of Oil-in-Water Emulsions Containing Sodium Caseinate. Journal of Colloid and Interface Science, 1998, 197, 133-141.	5.0	64
177	Rheology and Flocculation of Oil-in-Water Emulsions Made with Mixtures of $\hat{l}\pm s1$ -Casein + \hat{l}^2 -Casein. Journal of Colloid and Interface Science, 1998, 207, 82-89.	5.0	21
178	Influence of calcium ions on creaming and rheology of emulsions containing sodium caseinate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 144, 167-177.	2.3	66
179	Structure, stability and rheology of flocculated emulsions. Current Opinion in Colloid and Interface Science, 1998, 3, 633-638.	3.4	51
180	Neutron Reflectivity Study of Competitive Adsorption of beta;-Lactoglobulin and Nonionic Surfactant at the Air–Water Interface. International Dairy Journal, 1998, 8, 73-77.	1.5	49

#	Article	IF	Citations
181	Stability and rheological implications of electrostatic milk protein–polysaccharide interactions. Trends in Food Science and Technology, 1998, 9, 347-354.	7.8	334
182	Brownian dynamics simulations of filled particle gels. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 129-137.	1.7	30
183	Simulation of Interfacial Shear and Dilatational Rheology of an Adsorbed Protein Monolayer Modeled as a Network of Spherical Particles. Langmuir, 1998, 14, 7278-7286.	1.6	61
184	Rheology and Flocculation of High-Pressure-Treated \hat{I}^2 -Lactoglobulin-Stabilized Emulsions: \hat{A} Comparison with Thermal Treatment. Journal of Agricultural and Food Chemistry, 1998, 46, 2565-2571.	2.4	62
185	Influence of Protein Interfacial Composition on Salt Stability of Mixed Casein Emulsions. Journal of Agricultural and Food Chemistry, 1998, 46, 72-76.	2.4	32
186	Observation of the Dynamic Colloidal Interaction Forces between Casein-Coated Latex Particles. Langmuir, 1998, 14, 3466-3469.	1.6	15
187	Large deformation rheological behaviour of a model particle gel. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 2453-2462.	1.7	53
188	Viscoelastic Properties of Protein-Stabilized Emulsions:Â Effect of Proteinâ [^] 'Surfactant Interactions. Journal of Agricultural and Food Chemistry, 1998, 46, 91-97.	2.4	107
189	Proteins at interfaces and in emulsions Stability, rheology and interactions. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 1657-1669.	1.7	319
190	PROTEIN-POLYSACCHARIDE INTERACTIONS IN EMULSIONS CONTAINING HIGH PRESSURE TREATED PROTEIN. , 1998, , 314-322.		0
191	Protein–Polysaccharide Interactions in Emulsions Containing High Pressure-treated Protein. , 1998, , 214-219.		0
192	Effect of High Pressure Processing on Properties of Emulsions made with Pure Milk Proteins. , 1998, , 152-159.		3
193	Rheology of Emulsions—The Relationship to Structure and Stability. , 1998, , 145-174.		13
194	Influence of High Pressure on Bovine Serum Albumin and Its Complex with Dextran Sulfate. Journal of Agricultural and Food Chemistry, 1997, 45, 3465-3471.	2.4	75
195	Stress overshoot in a model particle gel. Journal of Chemical Physics, 1997, 107, 10191-10200.	1.2	79
196	Recent advances in the study of chemical surfaces and interfaces by specular neutron reflection. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 3899-3917.	1.7	319
197	Self-consistent-field modelling of casein adsorption Comparison of results for $\hat{l}\pm s1$ -casein and \hat{l}^2 -casein. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 425-432.	1.7	51
198	Flocculation and competitive adsorption in a mixed polymer system Relevance to casein-stabilized emulsions. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 2297-2301.	1.7	22

#	Article	IF	Citations
199	On gelation kinetics in a system of particles with both weak and strong interactions. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 111-114.	1.7	37
200	Effect of \hat{l}^1 -Carrageenan on Flocculation, Creaming, and Rheology of a Protein-Stabilized Emulsion. Journal of Agricultural and Food Chemistry, 1997, 45, 3799-3806.	2.4	142
201	Cross-Linking of Milk Proteins with Transglutaminase at the Oilâ "Water Interface. Journal of Agricultural and Food Chemistry, 1997, 45, 2514-2519.	2.4	79
202	Self-consistent-field modelling of adsorbed casein Interaction between two protein-coated surfaces. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 1785-1790.	1.7	78
203	Enzymic crosslinking as a tool for food colloid rheology control and interfacial stabilization. Trends in Food Science and Technology, 1997, 8, 334-339.	7.8	168
204	Properties of Emulsions Stabilized with Milk Proteins: Overview of Some Recent Developments. Journal of Dairy Science, 1997, 80, 2607-2619.	1.4	276
205	High pressure processing of foods. Food and Bioproducts Processing, 1997, 75, 59.	1.8	0
206	Depletion flocculation of emulsions containing unadsorbed sodium caseinate. Food Hydrocolloids, 1997, 11, 13-18.	5.6	201
207	On the effect of high-pressure treatment on the surface activity of \hat{l}^2 -casein. Food Hydrocolloids, 1997, 11, 507-509.	5.6	12
208	Brownian dynamics simulation of gelation in soft sphere systems with irreversible bond formation. Molecular Physics, 1997, 90, 739-758.	0.8	34
209	Influence of an anionic surfactant on the rheology of heat-set \hat{l}^2 -lactoglobulin-stabilized emulsion gels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 127, 1-10.	2.3	43
210	Creaming and Flocculation of Oil-in-Water Emulsions Containing Sodium Caseinate. Journal of Colloid and Interface Science, 1997, 185, 515-529.	5.0	228
211	Modeling of Combined Creaming and Flocculation in Emulsions. Journal of Colloid and Interface Science, 1997, 186, 80-89.	5.0	30
212	On the "Anomalous―Adsorption Behavior of Phosvitin. Journal of Colloid and Interface Science, 1997, 187, 539-541.	5.0	13
213	Rheology of Sodium Caseinate Stabilized Oil-in-Water Emulsions. Journal of Colloid and Interface Science, 1997, 191, 166-176.	5.0	160
214	Brownian dynamics simulation of gelation in soft sphere systems with irreversible bond formation. Molecular Physics, 1997, 90, 739-757.	0.8	79
215	Rheology of Milk Protein Gels and Protein-Stabilized Emulsion Gels Cross-Linked with Transglutaminase. Journal of Agricultural and Food Chemistry, 1996, 44, 1371-1377.	2.4	178
216	Effect of High-Pressure Treatment of Protein on the Rheology of Flocculated Emulsions Containing Protein and Polysaccharide. Journal of Agricultural and Food Chemistry, 1996, 44, 2992-3000.	2.4	69

#	Article	lF	CITATIONS
217	Crystallization kinetics in oil-in-water emulsions containing a mixture of solid and liquid droplets. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 1213.	1.7	18
218	Simulation of adsorption of flexible chains: concentration effects. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 2275-2280.	1.7	5
219	Interfacial Rheology and the Dynamic Properties of Adsorbed Films of Food Proteins and Surfactants Food Science and Technology Research, 1996, 2, 131-145.	0.2	98
220	Biopolymer Interactions in Emulsion Systems: Influences on Creaming, Flocculation, and Rheology. ACS Symposium Series, 1996, , 197-207.	0.5	15
221	Foam stabilization by protein-polysaccharide complexes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 113, 191-201.	2.3	60
222	Effect of lecithin on the viscoelastic properties of \hat{l}^2 -lactoglobulin-stabilized emulsion gels. Food Hydrocolloids, 1996, 10, 301-307.	5.6	61
223	Effect of high pressure on the emulsifying behaviour of \hat{l}^2 -lactoglobulin. Food Hydrocolloids, 1996, 10, 213-219.	5 . 6	89
224	Stability of water-in-oil-in-water emulsions containing faba bean proteins. Food Hydrocolloids, 1996, 10, 251-254.	5.6	29
225	Self-Consistent-Field Modeling of Adsorbed β-Casein: Effects of pH and Ionic Strength on Surface Coverage and Density Profile. Journal of Colloid and Interface Science, 1996, 178, 681-693.	5.0	122
226	Interpretation of ultrasound velocity creaming profiles. Ultrasonics, 1996, 34, 695-698.	2.1	16
227	Viscoelastic Properties of Heat-Set Whey Protein-Stabilized Emulsion Gels with Added Lecithin. Journal of Food Science, 1996, 61, 811-816.	1.5	70
228	Advances in Food Colloids. , 1996, , .		79
229	Molecular Basis of Protein Functionality. , 1996, , 27-80.		11
230	Protein-Polysaccharide Interactions. , 1996, , 81-101.		7
231	Fat Crystallization in Oil-in-Water Emulsions. , 1996, , 211-246.		10
232	Surfactant Micelles in Food., 1996,, 247-279.		3
233	Water-in-Oil-in-Water Multiple Emulsions. , 1996, , 280-300.		5
234	Computer Simulation. , 1996, , 102-144.		0

#	Article	IF	CITATIONS
235	Ultrasonic Characterization of Food Colloids. , 1996, , 176-210.		0
236	More Advances and Challenges. , 1996, , 301-312.		0
237	Neutron Reflectivity of Adsorbed Protein Films. ACS Symposium Series, 1995, , 311-320.	0.5	7
238	Surface shear viscosity and protein-surfactant interactions in mixed protein films adsorbed at the oil-water interface. Food Hydrocolloids, 1995, 9, 35-42.	5.6	57
239	Osmotic Pressure, Creaming, and Rheology of Emulsions Containing Nonionic Polysaccharide. Journal of Colloid and Interface Science, 1995, 172, 192-202.	5.0	53
240	Protein/surfactant interfacial interactions part 1. Flocculation of emulsions containing mixed protein + surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 100, 255-265.	2.3	49
241	High Pressure Effects on Emulsifying Behavior of Whey Protein Concentrate. Journal of Food Science, 1995, 60, 1341-1343.	1.5	60
242	SURFACE PROPERTIES OF PROTEIN LAYERS ADSORBED FROM MIXTURES OF GELATIN WITH VARIOUS CASEINS. Journal of Texture Studies, 1995, 26, 401-409.	1.1	17
243	Protein/surfactant interfacial interactions paet 2. Electrophoretic mobility of mixed protein + surfactant systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 100, 267-277.	2.3	45
244	Protein/surfactant interfacial interactions Part 3. Competitive adsorption of protein + surfactant in emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 101, 77-85.	2.3	61
245	The application of modified forms of the Urick equation to the interpretation of ultrasound velocity in scattering systems. Ultrasonics, 1995, 33, 243-251.	2.1	37
246	On flocculation and gelation in concentrated particulate systems containing added polymer. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 4413.	1.7	28
247	Influence of Water-Soluble Nonionic Emulsifier on the Rheology of Heat-Set Protein-Stabilized Emulsion Gels. Journal of Agricultural and Food Chemistry, 1995, 43, 2560-2566.	2.4	92
248	Brownian dynamics simulation of particle gel formation: from argon to yoghurt. Faraday Discussions, 1995, 101, 51.	1.6	85
249	Neutron reflectivity of adsorbed \hat{l}^2 -casein and \hat{l}^2 -lactoglobulin at the air/water interface. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 2847-2854.	1.7	182
250	Simulated structure of mixed particle gels. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 51.	1.7	21
251	Formulation and Properties of Protein-Stabilized Water-in-Oil -in-Water Multiple Emulsions. Special Publication - Royal Society of Chemistry, 1995, , 235-243.	0.0	9
252	Protein-Stabilized Emulsions. , 1994, , 59-74.		6

#	Article	IF	Citations
253	Emulsion Stability. , 1994, , 387-398.		11
254	Proteins at liquid interfaces: Role of the molten globule state. Colloids and Surfaces B: Biointerfaces, 1994, 3, 1-17.	2.5	126
255	Modeling of Concentration Profiles and Ultrasound Velocity Profiles in a Creaming Emulsion: Importance of Scattering Effects. Journal of Colloid and Interface Science, 1994, 166, 363-374.	5.0	31
256	Orthokinetic coalescence of protein-stabilized emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 88, 317-326.	2.3	40
257	Protein-stabilized emulsions. Journal of Food Engineering, 1994, 22, 59-74.	2.7	126
258	Colloidal aspects of beverages. Food Chemistry, 1994, 51, 343-347.	4.2	46
259	Competitive adsorption of $\hat{l}\pm$ -lactalbumin in the molten globule state. Food Hydrocolloids, 1994, 8, 555-566.	5.6	34
260	Creaming of concentrated oil-in-water emulsions containing xanthan. Food Hydrocolloids, 1994, 8, 481-497.	5.6	81
261	Flavour release from a protein-stabilized water-in-oil-in-water emulsion. Food Hydrocolloids, 1994, 8, 63-67.	5.6	45
262	Computer simulation of particle gel formation. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 173.	1.7	40
263	Brownian dynamics simulation of a multi-subunit deformable particle in simple shear flow. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 2737-2742.	1.7	11
264	surface Coverage of .betaLactoglobulin at the Oil-Water Interface: Influence of Protein Heat Treatment and Various Emulsifiers. Journal of Agricultural and Food Chemistry, 1994, 42, 1602-1606.	2.4	108
265	Effect of Emulsifier Type on the Crystallization Kinetics of Oil-in-Water Emulsions Containing a Mixture of Solid and Liquid Droplets. Journal of Colloid and Interface Science, 1993, 160, 293-297.	5.0	89
266	Time-dependent competitive adsorption of milk proteins and surfactants in oil-in-water emulsions. Journal of the Science of Food and Agriculture, 1993, 62, 283-289.	1.7	92
267	Absorption and velocity dispersion due to crystallization and melting of emulsion droplets. Ultrasonics, 1993, 31, 433-437.	2.1	49
268	Crystallization in oil-in-water emulsions containing liquid and solid droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 81, 273-279.	2.3	44
269	Competitive displacement of proteins in oil-in-water emulsions containing calcium ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 71, 197-203.	2.3	16
270	Creaming and rheology of emulsions containing polysaccharide and non-ionic or anionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 75, 195-201.	2.3	38

#	Article	IF	Citations
271	Oil-soluble Surfactants Have Little Effect on Competitive Adsorption of ?-Lactalbumin and ?-Lactoglobulin in Emulsions. Journal of Food Science, 1993, 58, 295-298.	1.5	50
272	Adsorbed films of β-lactoglobulin + lecithin at the hydrocarbon—water and triglyceride—water interfaces. Food Hydrocolloids, 1993, 6, 533-541.	5.6	70
273	Determination of protein foam stability from time-dependent pressure monitoring. Food Hydrocolloids, 1993, 7, 307-318.	5.6	7
274	Neutron reflectivity study of the competitive adsorption of \hat{l}^2 -casein and water $\hat{a} \in \hat{l}^2$ -soluble surfactant at the planar air-water interface. Food Hydrocolloids, 1993, 7, 497-505.	5.6	40
275	Experimental studies of particle packing and sintering behaviour of monosize and bimodal spherical silica powders. Journal of the European Ceramic Society, 1993, 11, 1-7.	2.8	38
276	Towards more natural emulsifiers. Trends in Food Science and Technology, 1993, 4, 330-334.	7.8	66
277	Dynamic simulation of the adsorption of a flexible chain. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 573-577.	1.7	4
278	Molecular dynamics simulation of competitive adsorption of spherical particles of different sizes. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 3453.	1.7	5
279	Orthokinetic destabilization of a protein-stabilized emulsion by a water-soluble surfactant. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 865.	1.7	52
280	A neutron reflectivity study of the adsorption of .betacasein at fluid interfaces. Langmuir, 1993, 9, 242-248.	1.6	159
281	Brownian dynamics model of deformable particle adsorption. Molecular Physics, 1993, 80, 431-440.	0.8	11
282	Interfacial interactions and the stability of oil-in-water emulsions. Pure and Applied Chemistry, 1992, 64, 1721-1724.	0.9	71
283	Faraday research article. Structure and composition of adsorbed protein layers and the relationship to emulsion stability. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 2973.	1.7	151
284	Emulsifying behaviour of protein in the presence of polysaccharide under conditions of thermodynamic incompatibility. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 849.	1.7	37
285	Adsorption of sticky hard spheres: relevance to protein competitive adsorption. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 3561.	1.7	36
286	Protein displacement from the emulsion droplet surface by oil-soluble and water-soluble surfactants. Journal of Agricultural and Food Chemistry, 1992, 40, 179-183.	2.4	120
287	Short-range structure of simulated flocs of particles with bridging polymer. Colloids and Surfaces, 1992, 62, 231-242.	0.9	13
288	Emulsifying properties of covalent proteinâ€"dextran hybrids. Colloids and Surfaces, 1992, 64, 299-310.	0.9	81

#	Article	IF	Citations
289	Influence of emulsifier on competitive adsorption of $\hat{l}\pm s$ -casein + \hat{l}^2 -lactoglobulin in oil-in-water emulsions. Colloids and Surfaces, 1992, 63, 329-335.	0.9	41
290	A statistical model for the simulation of adsorption from a mixture of deformable particles. Journal of Colloid and Interface Science, 1992, 152, 562-570.	5.0	15
291	Monte Carlo simulation of colloidal systems. Advances in Colloid and Interface Science, 1992, 42, 89-148.	7.0	37
292	Computer simulation model of the adsorption of proteinâ€"polysaccharide complexes. Food Hydrocolloids, 1992, 6, 345-357.	5.6	13
293	Calcium induced flocculation of emulsions containing adsorbed \hat{l}^2 -casein or phosvitin. Food Hydrocolloids, 1992, 6, 359-370.	5.6	33
294	Controlled release of L-tryptophan and Vitamin B2 from model water/oil/water multiple emulsions. Food Hydrocolloids, 1992, 6, 443-453.	5.6	52
295	Temperature dependence of the competitive displacement of protein from the emulsion droplet surface by surfactants. Food Hydrocolloids, 1992, 6, 163-171.	5.6	35
296	Adsorbed Protein Layers in Food Emulsions. , 1992, , 25-40.		3
297	Bridging flocculation induced by competitive adsorption: implications for emulsion stability. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 963.	1.7	30
298	Computer simulation of bridging flocculation. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 2193.	1.7	14
299	Time-dependent polymerization of \hat{l}^2 -lactoglobulin through disulphide bonds at the oil-water interface in emulsions. International Journal of Biological Macromolecules, 1991, 13, 26-30.	3.6	256
300	Competitive adsorption of lecithin and .betacasein in oil-in-water emulsions. Journal of Agricultural and Food Chemistry, 1991, 39, 1365-1368.	2.4	119
301	Molecular dynamics model of adsorbed layer at a plane fluid interface. Molecular Physics, 1991, 74, 1115-1124.	0.8	5
302	Emulsifying behaviour of gum arabic. Part 1: Effect of the nature of the oil phase on the emulsion droplet-size distribution. Carbohydrate Polymers, 1991, 14, 373-383.	5.1	85
303	Influence of polysaccharides on the creaming of casein-stabilized emulsions. Food Hydrocolloids, 1991, 5, 443-454.	5.6	59
304	Preparation of fine protein-stabilized water-in-oil-in-water emulsions. Food Hydrocolloids, 1991, 5, 481-485.	5.6	62
305	Emulsion stabilization by ionic and covalent complexes of \hat{l}^2 -lactoglobulin with polysaccharides. Food Hydrocolloids, 1991, 5, 281-296.	5.6	217
306	Foaming of aqueous solutions of protein + propylene glycol alginate. Food Hydrocolloids, 1991, 4, 395-402.	5.6	25

#	Article	IF	CITATIONS
307	Competitive adsorption of phosvitin with milk proteins in oil-in-water emulsions. Food Hydrocolloids, 1991, 4, 403-414.	5.6	48
308	Particle flocculation by adsorbing polymers. Advances in Colloid and Interface Science, 1991, 34, 1-29.	7.0	210
309	Emulsifying behaviour of gum arabic. Part 2: Effect of the gum molecular weight on the emulsion droplet-size distribution. Carbohydrate Polymers, 1991, 14, 385-392.	5.1	60
310	Competitive adsorption of \hat{l}^2 -lactoglobulin + tween 20 at the oil-water interface. Colloids and Surfaces, 1991, 56, 293-300.	0.9	130
311	Ultrasonic investigation of the particle size dependence of crystallization in n-hexadecane-in-water emulsions. Journal of Colloid and Interface Science, 1991, 142, 103-110.	5.0	79
312	Competitive adsorption of \hat{l}^2 -casein and nonionic surfactants in oil-in-water emulsions. Journal of Colloid and Interface Science, 1991, 145, 390-395.	5 . 0	145
313	Competitive Adsorption and Proteinâ€"Surfactant Interactions in Oil-in-Water Emulsions. ACS Symposium Series, 1991, , 114-129.	0.5	26
314	Stability of Food Emulsions Containing both Protein and Polysaccharide., 1991,, 132-146.		47
315	Competitive Adsorption of \hat{l}^2 -Lactoglobulin in Mixed Protein Emulsions. , 1991, , 485-489.		9
316	Bridging Flocculation in Emulsions Made with a Mixture of Protein + Polysaccharide., 1991,, 494-497.		3
317	Emulsifying and Surface Properties of the 11S and 7S Globulins of Soybean., 1991,, 498-502.		5
318	Effect of Ethanol on the Foaming of Food Macromolecules. , 1991, , 503-507.		1
319	Monitoring Crystallization in Simple and Mixed Oil-in-Water Emulsions using Ultrasonic Velocity Measurement., 1991,, 171-179.		7
320	Computer Simulation of Macromolecular Adsorption. , 1991, , 557-563.		0
321	Emulsifying Effects of Food Macromolecules In Presence of Ethanol. Journal of Food Science, 1990, 55, 875-876.	1.5	25
322	Creaming and flocculation in emulsions containing polysaccharide. Food Hydrocolloids, 1990, 4, 185-195.	5.6	154
323	Effect of ethanol content on foaming of alcoholic beverages. Food Hydrocolloids, 1990, 4, 77-82.	5.6	10
324	Crystallization in hydrocarbon-in-water emulsions containing a mixture of solid and liquid droplets. Chemical Physics Letters, 1990, 172, 449-452.	1.2	53

#	Article	IF	Citations
325	Effect of ethanol on the foaming of aqueous protein solutions. Colloids and Surfaces, 1990, 47, 353-365.	0.9	26
326	Bridging flocculation of sticky hard spheres. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 439.	1.7	15
327	Faraday communications. Ultrasonic monitoring of crystallization in an oil-in-water emulsion. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 1147.	1.7	37
328	Surface shear viscometry as a probe of protein-protein interactions in mixed milk protein films adsorbed at the oil-water interface. International Journal of Biological Macromolecules, 1990, 12, 189-194.	3.6	129
329	Simulation of adsorption of deformable particles modelled as cyclic lattice chains. A simple statistical model of protein adsorption. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 805.	1.7	16
330	Computer Simulation of the Coagulation and Flocculation of Colloidal Particles., 1990,, 707-727.		6
331	Surface and emulsifying properties of caseins. Journal of Dairy Research, 1989, 56, 471-477.	0.7	76
332	Computer simulation of the competitive adsorption between polymers and small displacer molecules. Molecular Physics, 1989, 68, 407-421.	0.8	23
333	Food colloids â€" An overview. Colloids and Surfaces, 1989, 42, 191-204.	0.9	90
334	Structure of simulated colloidal deposits. Colloids and Surfaces, 1989, 39, 143-159.	0.9	19
335	Competitive adsorption in oil-in-water emulsions containing \hat{l}_{\pm} -lactalbumin and \hat{l}^2 -lactoglobulin. Food Hydrocolloids, 1989, 3, 193-203.	5.6	107
336	Bridging flocculation in binary protein stabilized emulsions. Food Hydrocolloids, 1989, 3, 389-397.	5 . 6	33
337	Stability of alcohol-containing emulsions in relation to neck-plug formation in commercial cream liqueurs. Food Hydrocolloids, 1989, 3, 85-100.	5.6	17
338	On the film-forming and emulsion-stabilizing properties of gum arabic: dilution and flocculation aspects. Food Hydrocolloids, 1989, 3, 101-114.	5.6	89
339	Factors affecting the properties of cohesive creams formed from cream liqueurs. Journal of the Science of Food and Agriculture, 1989, 48, 225-234.	1.7	15
340	A model of a concentrated dispersion exhibiting bridging flocculation and depletion flocculation. Journal of Colloid and Interface Science, 1989, 132, 274-278.	5.0	48
341	Stability of Cream Liqueurs Containing Low-Molecular-Weight Surfactants. Journal of Food Science, 1989, 54, 77-81.	1.5	53
342	Ordering in simulated packed beds formed from binary mixtures of particles in two dimensions: Implications for ceramic processing. Powder Technology, 1989, 59, 11-24.	2.1	12

#	Article	IF	CITATIONS
343	Structure of simulated aggregates formed by reversible flocculation. Journal of the Chemical Society, Faraday Transactions 2, 1989, 85, 891.	1.1	20
344	Statistical study of a concentrated dispersion of deformable particles modelled as an assembly of cyclic lattice chains. Molecular Physics, 1989, 66, 865-886.	0.8	22
345	Adsorption at interfaces in dairy systems*. International Journal of Dairy Technology, 1989, 42, 18-22.	1.3	54
346	Competitive adsorption of $\hat{l}\pm s1$ -casein and \hat{l}^2 -casein in oil-in-water emulsions. Food Hydrocolloids, 1988, 2, 397-405.	5.6	172
347	Effect of alcohol on adsorption of casein at the oilâ€"water interface. Food Hydrocolloids, 1988, 2, 187-194.	5.6	39
348	Surface activity and emulsifying behaviour of some Acacia gums. Food Hydrocolloids, 1988, 2, 477-490.	5.6	107
349	Structure and porosity of simulated sediments of polydisperse particles. Industrial & Engineering Chemistry Research, 1988, 27, 1941-1946.	1.8	18
350	The structure of aggregates formed during the very early stages of colloidal coagulation. Journal of the Chemical Society, Faraday Transactions 2, 1988, 84, 775.	1.1	16
351	Coalescence stability of emulsion-sized droplets at a planar oil–water interface and the relationship to protein film surface rheology. Journal of the Chemical Society Faraday Transactions I, 1988, 84, 871.	1.0	112
352	Monte Carlo model of competitive adsorption between interacting macromolecules and surfactants. Molecular Physics, 1988, 65, 895-908.	0.8	14
353	Short-range structure of simulated colloidal aggregates. Physical Review A, 1987, 35, 2349-2352.	1.0	40
354	Mixed-Protein Films Adsorbed at the Oil-Water Interface. ACS Symposium Series, 1987, , 118-134.	0.5	35
355	Behaviour of adsorbed myosin at the oil-water interface. International Journal of Biological Macromolecules, 1987, 9, 302-304.	3.6	17
356	Brownian-dynamics simulation of the formation of colloidal aggregate and sediment structure. Faraday Discussions of the Chemical Society, 1987, 83, 167.	2.2	46
357	Short-range structure in aggregates, gels, and sediments. Journal of Colloid and Interface Science, 1987, 118, 286-289.	5.0	28
358	Interfacial and emulsifying behaviour of acetylated field bean protein isolate. Food Hydrocolloids, 1987, 1, 191-196.	5.6	22
359	A Brownian dynamics simulation of enzyme–substrate encounters at the surface of a colloidal particle. Journal of the Chemical Society, Faraday Transactions 2, 1986, 82, 719-727.	1.1	5
360	Polydisperse suspensions of spherical colloidal particles: analogies with multicomponent molecular liquid mixtures. Industrial & Engineering Chemistry Product Research and Development, 1986, 25, 82-87.	0.5	6

#	Article	IF	CITATIONS
361	Brownian dynamics simulation of the fragmentation of a large colloidal floc in simple shear flow. Journal of Colloid and Interface Science, 1986, 110, 73-81.	5.0	22
362	Mixed proteinaceous emulsifiers: review of competitive protein adsorption and the relationship to food colloid stabilization. Food Hydrocolloids, 1986, 1, 3-23.	5.6	116
363	Sediment formation by Brownian dynamics simulation: Effect of colloidal and hydrodynamic interactions on the sediment structure. Journal of Chemical Physics, 1986, 85, 4079-4086.	1.2	63
364	Chapter 3. Emulsions. Annual Reports on the Progress of Chemistry Section C, 1986, 83, 31.	4.4	12
365	lonic strength effects on the electrophoretic mobility of casein-coated polystyrene latex particles. Journal of Colloid and Interface Science, 1985, 108, 174-179.	5.0	32
366	Time—dependent surface viscosity of adsorbed films of casein + gelatin at the oil—water interface. Journal of Colloid and Interface Science, 1985, 106, 259-262.	5.0	90
367	Time-dependent surface pressures of adsorbed films of caseinate + gelatin at the oil—water interface. Colloids and Surfaces, 1985, 14, 135-141.	0.9	27
368	Brownian dynamic with hydrodynamic interactions: the application to protein diffusional problems. Chemical Society Reviews, 1985, 14, 421.	18.7	95
369	An adsorption effect on the gel strength of dilute gelatin-stabilized oil-in-water emulsions. Colloid and Polymer Science, 1985, 263, 933-934.	1.0	19
370	Aggregate structure and coagulation kinetics in a concentrated dispersion of interacting colloidal particles. Chemical Physics Letters, 1985, 122, 594-598.	1,2	32
371	Brownian dynamics with rotation–translation coupling. Journal of the Chemical Society, Faraday Transactions 2, 1985, 81, 591-601.	1.1	95
372	Brownian dynamics of colloidal-aggregate rotation and dissociation in shear flow. Journal of the Chemical Society, Faraday Transactions 2, 1985, 81, 1269.	1.1	36
373	Statistical Model of a Suspension of Deformable Particles. Physical Review Letters, 1984, 53, 728-731.	2.9	24
374	Effect of polar and non-polar interactions on the thermodynamics of triglyceride mixtures. Chemistry and Physics of Lipids, 1984, 34, 171-183.	1.5	0
375	Microviscosity of dilute latex + gelatin dispersions determined by dynamic light-scattering. Colloid and Polymer Science, 1984, 262, 51-55.	1.0	14
376	Kinetic theory of coagulation for a concentrated dispersion. Journal of Colloid and Interface Science, 1984, 98, 587-589.	5.0	9
377	Brownian encounters in a polydisperse sedimenting system of interacting colloidal particles. Journal of Colloid and Interface Science, 1984, 97, 220-231.	5.0	16
378	Light scattering from a coagulating dispersion of random aggregates. Journal of the Chemical Society, Faraday Transactions 2, 1984, 80, 1485.	1.1	3

#	Article	IF	CITATIONS
379	Symmetry aspects of phase separation in polydisperse systems. Chemical Physics Letters, 1983, 101, 562-566.	1.2	O
380	Colloid stability of casein-coated polystyrene particles. Journal of the Chemical Society Faraday Transactions I, 1983, 79, 2937.	1.0	34
381	Motion of flocs of two or three interacting colloidal particles in a hydrodynamic medium. Journal of the Chemical Society, Faraday Transactions 2, 1983, 79, 91.	1.1	34
382	Simulation of particle motion and stability in concentrated dispersions. Faraday Discussions of the Chemical Society, 1983, 76, 165.	2.2	23
383	Thermodynamics of oligomeric alkane liquid mixtures at high pressures. Journal of the Chemical Society Faraday Transactions I, 1982, 78, 2861.	1.0	0
384	An improved viscometric method for monitoring starch degradation. Journal of the Science of Food and Agriculture, 1982, 33, 194-196.	1.7	2
385	Thermodynamic aspects of emulsion phase inversion. Journal of Colloid and Interface Science, 1982, 87, 416-423.	5.0	32
386	Thermodynamics of glycerol trioleate + n-alkanes. Journal of the Chemical Society Faraday Transactions I, 1981, 77, 1987.	1.0	1
387	Polydispersity and the colloidal order-disorder transition. Chemical Physics Letters, 1981, 79, 578-582.	1.2	68
388	Shape polydispersity in concentrated colloidal dispersions. Journal of Colloid and Interface Science, 1981, 83, 305-306.	5.0	5
389	Interpretation of emulsion phase inversion as a cusp catastrophe. Journal of Colloid and Interface Science, 1981, 84, 284-287.	5.0	75
390	Monolayer deposition of colloidal particles from concentrated polydisperse systems. Journal of Colloid and Interface Science, 1981, 81, 132-138.	5.0	9
391	The statistical mechanics of physical adsorption in condensed phases. Advances in Molecular Relaxation and Interaction Processes, 1980, 17, 1-87.	0.6	28
392	Equation of state of glycerol trioleate. Journal of Chemical Thermodynamics, 1980, 12, 349-354.	1.0	2
393	Sedimentation of interacting colloidal particles. Journal of Colloid and Interface Science, 1980, 73, 578-581.	5.0	8
394	YIELD BEHAVIOUR OF CRUMBLY ENGLISH CHEESES IN COMPRESSION. Journal of Texture Studies, 1980, 11, 51-62.	1,1	28
395	Statistical thermodynamics of fluid phase equilibrium in a conformal polydisperse system. Journal of the Chemical Society, Faraday Transactions 2, 1980, 76, 1458.	1.1	27
396	Thermal expansion and shear viscosity coefficients of water + ethanol + sucrose mixtures. Journal of Chemical & Chemical	1.0	4

#	Article	IF	CITATIONS
397	Pressure-induced coagulation of an electrostatically-stabilized polystyrene latex dispersion. Colloid and Polymer Science, 1979, 257, 431-433.	1.0	7
398	On the thermodynamics of polydisperse systems of non-additive hard particles. Chemical Physics Letters, 1979, 66, 500-504.	1.2	19
399	Polydispersity and osmotic pressure of stable ordered colloidal dispersions. Journal of the Chemical Society, Faraday Transactions 2, 1979, 75, 466.	1.1	26
400	A hard disk fluid model of monolayer permeation and evaporation resistance. Journal of Colloid and Interface Science, 1978, 63, 461-471.	5.0	12
401	Equations of state of polydisperse hard-disc and hard-sphere systems. Chemical Physics Letters, 1978, 57, 148-150.	1.2	30
402	Effect of attractive forces on monolayer permeation and evaporation resistance. Journal of the Chemical Society, Faraday Transactions 2, 1978, 74, 821.	1.1	6
403	Sedimentation and density gradients near the liquid–liquid critical solution point in high gravitational fields. Journal of Chemical Physics, 1977, 66, 3786-3802.	1.2	33
404	Molecular dynamics simulation of hard-disc mixtures. Molecular Physics, 1977, 33, 1463-1478.	0.8	21
405	Molecular dynamics simulation of hard-disc mixtures. Molecular Physics, 1977, 34, 875-880.	0.8	14
406	Pressure dependence of shear viscosity in n-alkane + dimethylsiloxane mixtures. The Journal of Physical Chemistry, 1977, 81, 2108-2113.	2.9	11
407	Testing intermolecular potential functions using transport property data. Part 3.—Binary diffusion coefficient of methane + perfluoromethane. Journal of the Chemical Society Faraday Transactions I, 1976, 72, 2917.	1.0	4
408	Test of monolayer model for surface tensions of simple liquid mixtures. The Journal of Physical Chemistry, 1976, 80, 1880-1882.	2.9	3
409	Thermal conductivity of noble gas + hydrogen mixtures: the separability of translational and internal energy transport. Chemical Physics Letters, 1976, 42, 64-68.	1.2	3
410	Vapour pressure of hexamethyldisiloxane near its critical point: corresponding-states principle for dimethylsiloxanes. Journal of Chemical Thermodynamics, 1976, 8, 93-95.	1.0	11
411	Thermal conductivities of gaseous alkane + perfluoroalkane mixtures. Journal of the Chemical Society Faraday Transactions I, 1976, 72, 1997.	1.0	12
412	Resonant exchange of rotational energy and the thermal conductivity of gases. Journal of Chemical Physics, 1976, 64, 3703-3706.	1.2	5
413	Testing intermolecular potential functions using transport property data. Part 1.—Viscosity of hydrogen from 273 to 1060 K. Journal of the Chemical Society Faraday Transactions I, 1975, 71, 1953.	1.0	4
414	Corresponding states relations of linear dimethysiloxane oligomers. I. Pure components. Chemical Physics, 1975, 10, 17-22.	0.9	8

#	Article	IF	CITATIONS
415	Excess volumes of mixing of nearly spherical molecules 1. Mixtures containing dodecafluorocyclohexane. Journal of Chemical Thermodynamics, 1975, 7, 725-730.	1.0	4
416	Excess volumes of mixing of nearly spherical molecules 2. Mixtures containing cyclic dimethylsiloxanes. Journal of Chemical Thermodynamics, 1975, 7, 731-740.	1.0	87
417	The influence of chain length on the surface tensions of oligomeric mixtures. Journal of Colloid and Interface Science, 1975, 53, 467-475.	5.0	7
418	Gravitationally Induced Density Gradients near the Liquid-Liquid Critical Solution Point. Physical Review Letters, 1975, 34, 180-183.	2.9	25
419	Testing intermolecular potential functions using transport property data. Part 2.â€"Thermal conductivities of mixtures of helium with the hydrogen isotopes. Journal of the Chemical Society Faraday Transactions I, 1975, 71, 1962.	1.0	6
420	Thermodynamics of n-alkane + dimethylsiloxane mixtures. Part 2.â€"Vapour pressures and enthalpies of mixing. Journal of the Chemical Society Faraday Transactions I, 1974, 70, 2321.	1.0	11
421	Thermodynamics of n-alkane + dimethylsiloxane mixtures. Part 1.—Gas–liquid critical temperatures and pressures. Journal of the Chemical Society Faraday Transactions I, 1974, 70, 2313.	1.0	16
422	Thermodynamics of n-alkane + dimethylsiloxane mixtures. Part 3.â€"Excess volumes. Journal of the Chemical Society Faraday Transactions I, 1974, 70, 2328.	1.0	9
423	Solid/liquid phase equilibria in the mixtures methane + n-hexane and methane + n-pentane. Journal of the Chemical Society Faraday Transactions I, 1973, 69, 2179.	1.0	27
424	Colloidal aggregation: Mechanisms and implications. Special Publication - Royal Society of Chemistry, 0, , 68-83.	0.0	11
425	Measurement of bubble instability under conditions of rapid pressure change. Special Publication - Royal Society of Chemistry, 0, , 165-175.	0.0	3
426	Water-in-oil-in-water multiple emulsions stabilized by polymeric and natural emulsifiers., 0,, 133-143.		12
427	Self-consistent-field studies of mediated steric interactions in mixed protein + polysaccharide solutions. Special Publication - Royal Society of Chemistry, 0, , 74-74.	0.0	1
428	Chapter 16. Theoretical Study of Phase Transition Behaviour in Mixed Biopolymer + Surfactant Interfacial Layers Using the Self-Consistent-Field Approach., 0,, 245-256.		1
429	Chapter 20. Particle Tracking as a Probe of Microrheology in Food Colloids. , 0, , 305-318.		2
430	Chapter 25. Coalescence of Expanding Bubbles: Effects of Protein Type and Included Oil Droplets. , 0, , 369-382.		3
431	Chapter 33. Surface Topography of Heat-Set Whey Protein Gels: Effects of Added Salt and Xanthan Gum. , 0, , 473-484.		1
432	Gels, particle mobility, and diffusing wave spectroscopy - a cautionary tale. Special Publication - Royal Society of Chemistry, 0, , 432-443.	0.0	2

#	Article	IF	CITATIONS
433	Computer simulation of interfacial structure and large-deformation rheology during competitive adsorption of proteins and surfactants. Special Publication - Royal Society of Chemistry, 0, , 131-142.	0.0	O
434	Caseinate interactions in solution and in emulsions: effects of temperature, pH and calcium ions. Special Publication - Royal Society of Chemistry, 0, , 209-217.	0.0	2
435	Emulsion-stabilizing properties of depolymerised pectin: Effect of pH, oil type and calcium ions. Special Publication - Royal Society of Chemistry, 0, , 181-189.	0.0	O
436	Effect of surfactants on rheological properties of acid induced sodium caseinate emulsion gels. Special Publication - Royal Society of Chemistry, 0, , 100-108.	0.0	2
437	Effect of ionic calcium on the flocculation and gelation of sodium caseinate oil-in- water emulsions. Special Publication - Royal Society of Chemistry, 0, , 234-242.	0.0	0