Haibo Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10630759/publications.pdf Version: 2024-02-01

HAIROLIN

#	Article	IF	CITATIONS
1	3 D Hierarchical Porous Carbon for Supercapacitors Prepared from Lignin through a Facile Templateâ€Free Method. ChemSusChem, 2015, 8, 2114-2122.	6.8	247
2	Recent developments and advances in boron-doped diamond electrodes for electrochemical oxidation of organic pollutants. Separation and Purification Technology, 2019, 212, 802-821.	7.9	233
3	Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications. Energy, 2017, 128, 618-625.	8.8	160
4	Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications. Journal of Colloid and Interface Science, 2018, 530, 338-344.	9.4	155
5	A green technology for the preparation of high capacitance rice husk-based activated carbon. Journal of Cleaner Production, 2016, 112, 1190-1198.	9.3	154
6	Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance. Electrochimica Acta, 2015, 176, 1136-1142.	5.2	135
7	Hierarchical porous carbon derived from lignin for high performance supercapacitor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484, 518-527.	4.7	135
8	Hierarchical porous carbon based on the self-templating structure of rice husk for high-performance supercapacitors. RSC Advances, 2015, 5, 19294-19300.	3.6	107
9	Synthesis of hierarchically porous MnO2/rice husks derived carbon composite as high-performance electrode material for supercapacitors. Applied Energy, 2016, 178, 260-268.	10.1	96
10	High power supercapacitor electrodes based on flexible TiC-CDC nano-felts. Journal of Power Sources, 2012, 201, 368-375.	7.8	93
11	Lignin Derived Porous Carbons: Synthesis Methods and Supercapacitor Applications. Small Methods, 2021, 5, e2100896.	8.6	80
12	Anodic oxidation of aspirin on PbO 2 , BDD and porous Ti/BDD electrodes: Mechanism, kinetics and utilization rate. Separation and Purification Technology, 2015, 156, 124-131.	7.9	72
13	On the electrochemical origin of the enhanced charge acceptance of the lead–carbon electrode. Journal of Materials Chemistry A, 2015, 3, 4399-4404.	10.3	61
14	Anodic oxidation of anthraquinone dye Alizarin Red S at Ti/BDD electrodes. Applied Surface Science, 2011, 257, 6667-6671.	6.1	59
15	High energy density PbO2/activated carbon asymmetric electrochemical capacitor based on lead dioxide electrode with three-dimensional porous titanium substrate. International Journal of Hydrogen Energy, 2014, 39, 17153-17161.	7.1	59
16	One-dimensional hierarchically porous carbon from biomass with high capacitance as supercapacitor materials. Microporous and Mesoporous Materials, 2017, 251, 77-82.	4.4	59
17	Electrochemical oxidation of aqueous phenol at low concentration using Ti/BDD electrode. Separation and Purification Technology, 2012, 88, 116-120.	7.9	55
18	Novel egg white gel polymer electrolyte and a green solid-state supercapacitor derived from the egg and rice waste. Electrochimica Acta, 2018, 274, 316-325.	5.2	55

Haibo Lin

#	Article	IF	CITATIONS
19	Preparation and characterization of lead dioxide electrode with three-dimensional porous titanium substrate for electrochemical energy storage. Electrochimica Acta, 2014, 139, 209-216.	5.2	44
20	Performance characterization of Ti substrate lead dioxide electrode with different solid solution interlayers. Journal of Materials Science, 2012, 47, 6709-6715.	3.7	42
21	Boron doped diamond electrodes based on porous Ti substrates. Materials Letters, 2012, 83, 112-114.	2.6	41
22	Highly reversible lead-carbon battery anode with lead grafting on the carbon surface. Journal of Energy Chemistry, 2018, 27, 1674-1683.	12.9	38
23	Fabrication, characterization and electrocatalytic application of a lead dioxide electrode with porous titanium substrate. Journal of Alloys and Compounds, 2015, 650, 705-711.	5.5	37
24	Electrodeposition of three-dimensional ZnO@MnO2 core–shell nanocables as high-performance electrode material for supercapacitors. Energy, 2015, 93, 1259-1266.	8.8	34
25	Hierarchical porous carbon@PbO1-x composite for high-performance lead-carbon battery towards renewable energy storage. Energy, 2020, 193, 116675.	8.8	34
26	A hydrophobic three-dimensionally networked boron-doped diamond electrode towards electrochemical oxidation. Chemical Communications, 2016, 52, 8026-8029.	4.1	31
27	Optimized lead carbon composite for enhancing the performance of lead-carbon battery under HRPSoC operation. Journal of Electroanalytical Chemistry, 2019, 832, 266-274.	3.8	31
28	Porous quasi three-dimensional nano-Mn3O4+PbO2 composite as supercapacitor electrode material. Electrochimica Acta, 2012, 83, 175-182.	5.2	30
29	A composite electrodeposited PbO ₂ /SnO ₂ positive electrode material for hybrid supercapacitors. RSC Advances, 2015, 5, 98983-98989.	3.6	26
30	Significance of PbO deposition ratio in activated carbon-based lead-carbon composites for lead-carbon battery under high-rate partial-state-of-charge operation. Electrochimica Acta, 2020, 338, 135868.	5.2	26
31	Preparation of C/SnO2 composite with rice husk-based porous carbon carrier loading ultrasmall SnO2 nanoparticles for anode in lithium-ion batteries. Journal of Electroanalytical Chemistry, 2020, 857, 113634.	3.8	25
32	A comprehensive green utilization strategy of lignocellulose from rice husk for the fabrication of high-rate electrochemical zinc ion capacitors. Journal of Cleaner Production, 2021, 327, 129522.	9.3	25
33	Effects of nano-SiO2 doped PbO2 as the positive electrode on the performance of lead-carbon hybrid capacitor. Journal of Colloid and Interface Science, 2020, 574, 377-384.	9.4	24
34	On the cycling stability of the supercapacitive performance of activated carbon in KOH and H 2 SO 4 electrolytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 511, 294-302.	4.7	23
35	Influence of F ^{â€} doping on the microstructure, surface morphology and electrochemical properties of the lead dioxide electrode. Surface and Interface Analysis, 2013, 45, 715-721.	1.8	22
36	Hierarchical Porous Carbon Prepared through Sustainable CuCl ₂ Activation of Rice Husk for Highâ€Performance Supercapacitors. ChemistrySelect, 2019, 4, 2314-2319.	1.5	22

Haibo Lin

#	Article	IF	CITATIONS
37	The application of rice husk-based porous carbon in positive electrodes of lead acid batteries. Journal of Energy Storage, 2020, 30, 101392.	8.1	21
38	Effect of polyvinyl alcohol/nano-carbon colloid on the electrochemical performance of negative plates of lead acid battery. Journal of Electroanalytical Chemistry, 2019, 832, 152-157.	3.8	20
39	Sustainable production of lignin-derived porous carbons for high-voltage electrochemical capacitors. Chemical Engineering Science, 2022, 255, 117672.	3.8	19
40	Enhanced electrochemical supercapacitor performance with a three-dimensional porous boron-doped diamond film. New Journal of Chemistry, 2019, 43, 18813-18822.	2.8	16
41	Facile Self-templating Melting Route Preparation of Biomass-derived Hierarchical Porous Carbon for Advanced Supercapacitors. Chemical Research in Chinese Universities, 2018, 34, 983-988.	2.6	15
42	Hierarchical porous carbon derived from Allium cepa for supercapacitors through direct carbonization method with the assist of calcium acetate. Chinese Chemical Letters, 2017, 28, 2295-2297.	9.0	14
43	Longâ€Life Leadâ€Acid Battery for Highâ€Rate Partialâ€Stateâ€ofâ€Charge Operation Enabled by a Riceâ€Huskâ Activated Carbon Negative Electrode Additive. ChemistrySelect, 2020, 5, 2551-2558.	€Based 1.5	12
44	Template-free synthesis of lignin-derived 3D hierarchical porous carbon for supercapacitors. Journal of Materials Science: Materials in Electronics, 2021, 32, 7009-7018.	2.2	12
45	Sulfation on coated carbon related to lead ion and its effect on the performance of advanced ultra-battery at high rate. Chemical Engineering Journal, 2021, 409, 128151.	12.7	12
46	Feasibility and advantage of biofilm-electrode reactor for phenol degradation. Journal of Environmental Sciences, 2009, 21, 1181-1185.	6.1	10
47	Anodic preparation and supercapacitive performance of nano-Co3O4/MnO2composites. RSC Advances, 2014, 4, 64675-64682.	3.6	10
48	Facile fabrication of porous carbon microtube with surrounding carbon skeleton for long-life electrochemical capacitive energy storage. Energy, 2018, 155, 899-908.	8.8	10
49	Effect of the lead deposition on the performance of the negative electrode in an aqueous lead–carbon hybrid capacitor. Journal of Energy Chemistry, 2021, 55, 509-516.	12.9	10
50	Oxygen-functionalized defect engineering of carbon additives enable lead-carbon batteries with high cycling stability. Journal of Energy Storage, 2021, 43, 103205.	8.1	10
51	Anodic co-electrodeposition of hierarchical porous nano-SiO2+PbO2 composite for enhanced performance of advanced lead-carbon batteries. Journal of Energy Storage, 2021, 35, 102285.	8.1	8
52	Design principles of lead-carbon additives toward better lead-carbon batteries. Current Opinion in Electrochemistry, 2021, 30, 100802.	4.8	7
53	Influence of the biofilm formation process on the properties of biofilm electrode material. Materials Letters, 2012, 78, 174-176.	2.6	5