Yoseph Beyene

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1063029/publications.pdf

Version: 2024-02-01

45 papers

3,351 citations

236925 25 h-index 243625 44 g-index

45 all docs 45 docs citations

45 times ranked

2909 citing authors

#	Article	IF	CITATIONS
1	Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends in Plant Science, 2017, 22, 961-975.	8.8	1,004
2	Genetic Gains in Grain Yield Through Genomic Selection in Eight Biâ€parental Maize Populations under Drought Stress. Crop Science, 2015, 55, 154-163.	1.8	253
3	Effectiveness of Genomic Prediction of Maize Hybrid Performance in Different Breeding Populations and Environments. G3: Genes, Genomes, Genetics, 2012, 2, 1427-1436.	1.8	242
4	Genomic Prediction in Maize Breeding Populations with Genotyping-by-Sequencing. G3: Genes, Genomes, Genetics, 2013, 3, 1903-1926.	1.8	235
5	Genome-wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm. Theoretical and Applied Genetics, 2015, 128, 1957-1968.	3.6	145
6	Effect of Trait Heritability, Training Population Size and Marker Density on Genomic Prediction Accuracy Estimation in 22 bi-parental Tropical Maize Populations. Frontiers in Plant Science, 2017, 8, 1916.	3.6	145
7	Meta-analyses of QTL for grain yield and anthesis silking interval in 18 maize populations evaluated under water-stressed and well-watered environments. BMC Genomics, 2013, 14, 313.	2.8	129
8	Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments. Theoretical and Applied Genetics, 2021, 134, 1729-1752.	3.6	92
9	Genomeâ€wide Association for Plant Height and Flowering Time across 15 Tropical Maize Populations under Managed Drought Stress and Wellâ€Watered Conditions in Subâ€Saharan Africa. Crop Science, 2016, 56, 2365-2378.	1.8	88
10	Improving Maize Grain Yield under Drought Stress and Nonâ€stress Environments in Subâ€Saharan Africa using Markerâ€Assisted Recurrent Selection. Crop Science, 2016, 56, 344-353.	1.8	70
11	Quality control genotyping for assessment of genetic identity and purity in diverse tropical maize inbred lines. Theoretical and Applied Genetics, 2012, 125, 1487-1501.	3.6	68
12	Quantitative Trait Loci Mapping and Molecular Breeding for Developing Stress Resilient Maize for Subâ€Saharan Africa. Crop Science, 2015, 55, 1449-1459.	1.8	61
13	Empirical Comparison of Tropical Maize Hybrids Selected Through Genomic and Phenotypic Selections. Frontiers in Plant Science, 2019, 10, 1502.	3.6	54
14	Genetic architecture of maize chlorotic mottle virus and maize lethal necrosis through GWAS, linkage analysis and genomic prediction in tropical maize germplasm. Theoretical and Applied Genetics, 2019, 132, 2381-2399.	3.6	53
15	Maize lethal necrosis (MLN): Efforts toward containing the spread and impact of a devastating transboundary disease in sub-Saharan Africa. Virus Research, 2020, 282, 197943.	2.2	53
16	Combining ability and testcross performance of droughtâ€tolerant maize inbred lines under stress and nonâ€stress environments in Kenya. Plant Breeding, 2017, 136, 197-205.	1.9	50
17	Genetic analysis of tropical maize inbred lines for resistance to maize lethal necrosis disease. Euphytica, 2017, 213, 224.	1.2	48
18	A Genomic Selection Index Applied to Simulated and Real Data. G3: Genes, Genomes, Genetics, 2015, 5, 2155-2164.	1.8	42

#	Article	IF	CITATIONS
19	On-farm performance and farmers' participatory assessment of new stress-tolerant maize hybrids in Eastern Africa. Field Crops Research, 2020, 246, 107693.	5.1	39
20	Maximizing efficiency of genomic selection in CIMMYT's tropical maize breeding program. Theoretical and Applied Genetics, 2021, 134, 279-294.	3.6	36
21	Genetic distance among doubled haploid maize lines and their testcross performance under drought stress and non-stress conditions. Euphytica, 2013, 192, 379-392.	1.2	34
22	Genome-Wide Analyses and Prediction of Resistance to MLN in Large Tropical Maize Germplasm. Genes, 2020, 11, 16.	2.4	34
23	Strategies for Effective Use of Genomic Information in Crop Breeding Programs Serving Africa and South Asia. Frontiers in Plant Science, 2020, 11, 353.	3.6	33
24	Developing and deploying insect resistant maize varieties to reduce pre-and post-harvest food losses in Africa. Food Security, 2016, 8, 211-220.	5.3	31
25	Host plant resistance for fall armyworm management in maize: relevance, status and prospects in Africa and Asia. Theoretical and Applied Genetics, 2022, 135, 3897-3916.	3.6	29
26	Performance and yield stability of maize hybrids in stress-prone environments in eastern Africa. Crop Journal, 2020, 8, 107-118.	5.2	26
27	Maize lethal necrosis disease: Evaluating agronomic and genetic control strategies for Ethiopia and Kenya. Agricultural Systems, 2018, 162, 220-228.	6.1	25
28	Genotype by environment interactions and agronomic performance of doubled haploids testcross maize (Zea mays L.) hybrids. Euphytica, 2016, 207, 353-365.	1.2	24
29	Resistance of Bt-maize (MON810) against the stem borers Busseola fusca (Fuller) and Chilo partellus (Swinhoe) and its yield performance in Kenya. Crop Protection, 2016, 89, 202-208.	2.1	19
30	Genetic Analysis of QTL for Resistance to Maize Lethal Necrosis in Multiple Mapping Populations. Genes, 2020, 11, 32.	2.4	19
31	Genetic dissection of Striga hermonthica (Del.) Benth. resistance via genome-wide association and genomic prediction in tropical maize germplasm. Theoretical and Applied Genetics, 2021, 134, 941-958.	3.6	19
32	Grain yield performance and flowering synchrony of CIMMYT's tropical maize (Zea mays L.) parental inbred lines and single crosses. Euphytica, 2016, 211, 395-409.	1.2	18
33	Performance and grain yield stability of maize populations developed using marker-assisted recurrent selection and pedigree selection procedures. Euphytica, 2016, 208, 285-297.	1.2	18
34	Grain-yield stability among tropical maize hybrids derived from doubled-haploid inbred lines under random drought stress and optimum moisture conditions. Crop and Pasture Science, 2018, 69, 691.	1.5	18
35	Application of Genomic Selection at the Early Stage of Breeding Pipeline in Tropical Maize. Frontiers in Plant Science, 2021, 12, 685488.	3.6	18
36	Scalable Sparse Testing Genomic Selection Strategy for Early Yield Testing Stage. Frontiers in Plant Science, 2021, 12, 658978.	3.6	15

#	Article	IF	CITATIONS
37	Genomic Analysis of Resistance to Fall Armyworm (Spodoptera frugiperda) in CIMMYT Maize Lines. Genes, 2022, 13, 251.	2.4	13
38	Hybrid Breeding for MLN Resistance: Heterosis, Combining Ability, and Hybrid Prediction. Plants, 2020, 9, 468.	3.5	10
39	Discovery and Validation of a Recessively Inherited Major-Effect QTL Conferring Resistance to Maize Lethal Necrosis (MLN) Disease. Frontiers in Genetics, 2021, 12, 767883.	2.3	10
40	Parental genome contribution in maize DH lines derived from six backcross populations using genotyping by sequencing. Euphytica, 2015, 202, 129-139.	1.2	6
41	Onâ€farm Performance and Farmers' Perceptions of <i>DroughtTEGO</i> â€Climateâ€Smart Maize Hybrids in Kenya. Agronomy Journal, 2019, 111, 2754-2768.	1.8	6
42	Simulation of Maize Lethal Necrosis (MLN) Damage Using the CERES-Maize Model. Agronomy, 2020, 10, 710.	3.0	6
43	Increasing Genetic Gains in Maize in Stress-Prone Environments of the Tropics., 2020,, 97-132.		6
44	Evaluation of early-generation tropical maize testcrosses for grain-yield potential and weevil (Sitophilus zeamais Motschulsky) resistance. Crop Protection, 2021, 139, 105384.	2.1	4
45	Identification of Genomic Regions Associated with Agronomic and Disease Resistance Traits in a Large Set of Multiple DH Populations. Genes, 2022, 13, 351.	2.4	3