
David Klahr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10628521/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Questions – And Some Answers – About Young Children's Questions. Journal of Cognition and Development, 2020, 21, 729-753.	0.6	9
2	Improving Students' Scientific Thinking. , 2019, , 67-99.		6
3	Children's developing ability to create external representations: Separating what information is included from how the information is represented. , 2019, , 1044-1044.		3
4	Data-Driven Belief Revision in Children and Adults. Journal of Cognition and Development, 2017, 18, 87-109.	0.6	17
5	Invention Versus Direct Instruction: For Some Content, It's a Tie. Journal of Science Education and Technology, 2017, 26, 582-596.	2.4	35
6	Effects of terminological concreteness on middle-school students' learning of experimental design Journal of Educational Psychology, 2016, 108, 547-562.	2.1	4
7	Guided Play. Current Directions in Psychological Science, 2016, 25, 177-182.	2.8	207
8	Investigating the mechanisms of learning from a constrained preparation for future learning activity. Instructional Science, 2013, 41, 191-216.	1.1	16
9	Sequential effects of high and low instructional guidance on children's acquisition of experimentation skills: Is it all in the timing?. Instructional Science, 2013, 41, 621-634.	1.1	67
10	Instructional Complexity and the Science to Constrain It. Science, 2013, 342, 935-937.	6.0	136
11	What do we mean? On the importance of not abandoning scientific rigor when talking about science education. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14075-14080.	3.3	20
12	Children's scientific curiosity: In search of an operational definition of an elusive concept. Developmental Review, 2012, 32, 125-160.	2.6	213
13	Detecting, Classifying, and Remediating. , 2012, , 137-180.		20
14	Finding One's Place in Transfer Space. Child Development Perspectives, 2011, 5, 196-204.	2.1	48
15	Educational Interventions to Advance Children's Scientific Thinking. Science, 2011, 333, 971-975.	6.0	98
16	Predictors of Transfer of Experimental Design Skills in Elementary and Middle School Children. Lecture Notes in Computer Science, 2010, , 198-208.	1.0	9
17	Comparison of a Computer-Based to Hands-On Lesson in Experimental Design. Lecture Notes in Computer Science, 2010, , 408-410.	1.0	3
18	Psychology's role in mathematics and science education American Psychologist, 2009, 64, 538-550.	3.8	66

David Klahr

#	Article	IF	CITATIONS
19	Developing elementary science skills: Instructional effectiveness and path independence. Cognitive Development, 2008, 23, 488-511.	0.7	74
20	Remote Transfer of Scientific-Reasoning and Problem-Solving Strategies in Children. Advances in Child Development and Behavior, 2008, 36, 419-470.	0.7	20
21	Virtual vs. Physical Materials in Early Science Instruction: Transitioning to an Autonomous Tutor for Experimental Design. , 2008, , 163-172.		4
22	Hands on what? The relative effectiveness of physical versus virtual materials in an engineering design project by middle school children. Journal of Research in Science Teaching, 2007, 44, 183-203.	2.0	249
23	Cognitive Research and Elementary Science Instruction: From the Laboratory, to the Classroom, and Back. Journal of Science Education and Technology, 2005, 14, 217-238.	2.4	68
24	Early Science Instruction: Addressing Fundamental Issues. Psychological Science, 2005, 16, 871-873.	1.8	12
25	Commentary: new kids on the connectionist modeling block. Developmental Science, 2004, 7, 165-166.	1.3	2
26	The Equivalence of Learning Paths in Early Science Instruction: Effects of Direct Instruction and Discovery Learning. Psychological Science, 2004, 15, 661-667.	1.8	622
27	Overcoming the Positive-Capture Strategy in Young Children: Learning About Indeterminacy. Child Development, 2003, 74, 1275-1296.	1.7	52
28	Point and Click or Grab and Heft: Comparing the Influence of Physical and Virtual Instructional Materials on Elementary School Students' Ability to Design Experiments. Cognition and Instruction, 2003, 21, 149-173.	1.9	178
29	Error Matters: An Initial Exploration of Elementary School Children's Understanding of Experimental Error. Journal of Cognition and Development, 2003, 4, 67-98.	0.6	69
30	What Have Psychologists (And Others) Discovered About the Process of Scientific Discovery?. Current Directions in Psychological Science, 2001, 10, 75-79.	2.8	35
31	Directions to "Eureka!". Science, 2001, 292, 2009-2010.	6.0	0
32	Solving Inductive Reasoning Problems in Mathematics: Not-so-Trivial Pursuit. Cognitive Science, 2000, 24, 249-298.	0.8	55
33	Bridging Research and Practice: A Cognitively Based Classroom Intervention for Teaching Experimentation Skills to Elementary School Children. Cognition and Instruction, 2000, 18, 423-459.	1.9	79
34	All Other Things Being Equal: Acquisition and Transfer of the Control of Variables Strategy. Child Development, 1999, 70, 1098-1120.	1.7	586
35	Studies of scientific discovery: Complementary approaches and convergent findings Psychological Bulletin, 1999, 125, 524-543.	5.5	265
36	The Interaction of Domain-Specific Knowledge and Domain-General Discovery Strategies: A Study with Sinking Objects. Child Development, 1996, 67, 2709.	1.7	67

David Klahr

#	Article	IF	CITATIONS
37	Knowing about Guessing and Guessing about Knowing: Preschoolers' Understanding of Indeterminacy. Child Development, 1996, 67, 689.	1.7	71
38	When to trust the data: Further investigations of system error in a scientific reasoning task. Memory and Cognition, 1996, 24, 655-668.	0.9	27
39	Knowing about Guessing and Guessing about Knowing: Preschoolers' Understanding of Indeterminacy. Child Development, 1996, 67, 689-716.	1.7	79
40	The Interaction of Domain-Specific Knowledge and Domain-General Discovery Strategies: A Study with Sinking Objects. Child Development, 1996, 67, 2709-2727.	1.7	67
41	SCIENTIFIC THINKING ABOUT SCIENTIFIC THINKING. Monographs of the Society for Research in Child Development, 1995, 60, 137-151.	6.8	15
42	Strategies of Knowledge Acquisition. Monographs of the Society for Research in Child Development, 1995, 60, i.	6.8	275
43	Children, Adults, and Machines as Discovery Systems. Machine Learning, 1994, 14, 313-320.	3.4	1
44	A Computational Account of Children's Learning About Number Conservation. , 1991, , 423-462.		2
45	Cognitive objectives in a LOGO debugging curriculum: Instruction, learning, and transfer. Cognitive Psychology, 1988, 20, 362-404.	0.9	183
46	Dual Space Search During Scientific Reasoning. Cognitive Science, 1988, 12, 1-48.	0.8	786
47	Dual space search during scientific reasoning. Cognitive Science, 1988, 12, 1-48.	0.8	48
48	Assessing Children's Logo Debugging Skills with a Formal Model. Journal of Educational Computing Research, 1986, 2, 487-525.	3.6	69
49	Instructionless learning about a complex device: the paradigm and observations. International Journal of Man-Machine Studies, 1986, 25, 153-189.	0.7	53
50	Solving Problems with Ambiguous Subgoal Ordering: Preschoolers' Performance. Child Development, 1985, 56, 940.	1.7	35
51	Nonmonotone Assessment of Monotone Development: An Information Processing Analysis. , 1982, , 63-86.		10
52	Formal assessment of problem-solving and planning processes in preschool children. Cognitive Psychology, 1981, 13, 113-148.	0.9	219
53	The Representation of Children's Knowledge. Advances in Child Development and Behavior, 1978, 12, 61-116.	0.7	51
54	Rages over stages. Behavioral and Brain Sciences, 1978, 1, 191-192.	0.4	1

DAVID KLAHR

#	Article	IF	CITATIONS
55	Span and rate of apprehension in children and adults. Journal of Experimental Child Psychology, 1975, 19, 434-439.	0.7	243
56	The role of quantification operators in the development of conservation of quantity. Cognitive Psychology, 1973, 4, 301-327.	0.9	119
57	QUANTIFICATION PROCESSES. , 1973, , 3-34. A PRODUCTION SYSTEM FOR COUNTING, SUBITIZING AND ADDING11This paper presents a detailed		24
58	description of production systems; there are several background papers that are required to fully understand the methodology and the particular substantive problems to which it is applied. For the general theoretical orientation, see Newell and Simon (1972); for the details of production systems and the rules of a production system interpreter, see Newell (1972). For the problems of cognitive		22
59	development involving quanti., 1973, , 527-546. THE DEVELOPMENT OF SERIAL COMPLETION STRATEGIES: AN INFORMATION PROCESSING ANALYSIS. British Journal of Psychology, 1970, 61, 243-257.	1.2	43
60	An information processing analysis of some piagetian experimental tasks. Cognitive Psychology, 1970, 1, 358-387.	0.9	64
61	A monte carlo investigation of the statistical significance of Kruskal's nonmetric scaling procedure. Psychometrika, 1969, 34, 319-330.	1.2	180
62	Decision Making in a Complex Environment: The use of Similarity Judgements to Predict Preferences. Management Science, 1969, 15, 595-618.	2.4	31
63	Conceptual Change When Learning Experimental Design. , 0, , .		1
64	Error Matters: An Initial Exploration of Elementary School Children's Understanding of Experimental Error. , 0, .		10