Diana Karpman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1062802/publications.pdf

Version: 2024-02-01

100 papers

6,567 citations

45 h-index 79 g-index

105 all docs

105 docs citations

105 times ranked 5736 citing authors

#	Article	IF	CITATIONS
1	An international consensus approach to the management of atypical hemolytic uremic syndrome in children. Pediatric Nephrology, 2016, 31, 15-39.	0.9	445
2	Guideline for the investigation and initial therapy of diarrhea-negative hemolytic uremic syndrome. Pediatric Nephrology, 2009, 24, 687-696.	0.9	315
3	Extracellular vesicles in renal disease. Nature Reviews Nephrology, 2017, 13, 545-562.	4.1	238
4	Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatric Nephrology, 2019, 34, 11-30.	0.9	230
5	Pathogenesis of Shiga Toxin-Associated Hemolytic Uremic Syndrome. Pediatric Research, 2001, 50, 163-171.	1.1	180
6	Interleukin 8 Receptor Deficiency Confers Susceptibility to Acute Experimental Pyelonephritis and May Have a Human Counterpart. Journal of Experimental Medicine, 2000, 192, 881-890.	4.2	175
7	Lipopolysaccharide from enterohemorrhagic Escherichia coli binds to platelets through TLR4 and CD62 and is detected on circulating platelets in patients with hemolytic uremic syndrome. Blood, 2006, 108, 167-176.	0.6	166
8	Complement activation on platelet-leukocyte complexes and microparticles in enterohemorrhagic Escherichia coli–induced hemolytic uremic syndrome. Blood, 2011, 117, 5503-5513.	0.6	163
9	Apoptosis of Renal Cortical Cells in the Hemolytic-Uremic Syndrome: In Vivo and In Vitro Studies. Infection and Immunity, 1998, 66, 636-644.	1.0	161
10	Characterization of mutations in complement factor I (CFI) associated with hemolytic uremic syndrome. Molecular Immunology, 2008, 45, 95-105.	1.0	136
11	Factor H dysfunction in patients with atypical hemolytic uremic syndrome contributes to complement deposition on platelets and their activation. Blood, 2008, 111, 5307-5315.	0.6	128
12	Platelet activation by Shiga toxin and circulatory factors as a pathogenetic mechanism in the hemolytic uremic syndrome. Blood, 2001, 97, 3100-3108.	0.6	127
13	Cytokines in childhood hemolytic uremic syndrome and thrombotic thrombocytopenic purpura. Pediatric Nephrology, 1995, 9, 694-699.	0.9	124
14	Reduced Tollâ€Like Receptor 4 Expression in Children with Asymptomatic Bacteriuria. Journal of Infectious Diseases, 2007, 196, 475-484.	1.9	113
15	Shiga Toxin and Lipopolysaccharide Induce Platelet-Leukocyte Aggregates and Tissue Factor Release, a Thrombotic Mechanism in Hemolytic Uremic Syndrome. PLoS ONE, 2009, 4, e6990.	1.1	113
16	Haemolytic uraemic syndrome. Journal of Internal Medicine, 2017, 281, 123-148.	2.7	108
17	Eculizumab treatment for rescue of renal function in IgA nephropathy. Pediatric Nephrology, 2014, 29, 2225-2228.	0.9	101
18	Uropathogenic Escherichia coli as a model of host–parasite interaction. Current Opinion in Microbiology, 2006, 9, 33-39.	2.3	98

#	Article	IF	Citations
19	Multimeric α-Lactalbumin from Human Milk Induces Apoptosis through a Direct Effect on Cell Nuclei. Experimental Cell Research, 1999, 246, 451-460.	1.2	96
20	An audit analysis of a guideline for the investigation and initial therapy of diarrhea negative (atypical) hemolytic uremic syndrome. Pediatric Nephrology, 2014, 29, 1967-1978.	0.9	95
21	A Novel Mechanism of Bacterial Toxin Transfer within Host Blood Cell-Derived Microvesicles. PLoS Pathogens, 2015, 11, e1004619.	2.1	95
22	Epidemiology, Clinical Presentation, and Pathophysiology of Atypical and Recurrent Hemolytic Uremic Syndrome. Seminars in Thrombosis and Hemostasis, 2006, 32, 113-120.	1.5	91
23	Toll-Like Receptor 4 Promoter Polymorphisms: Common TLR4 Variants May Protect against Severe Urinary Tract Infection. PLoS ONE, 2010, 5, e10734.	1.1	90
24	Inherited Susceptibility to Acute Pyelonephritis: A Family Study of Urinary Tract Infection. Journal of Infectious Diseases, 2007, 195, 1227-1234.	1.9	86
25	A Genetic Basis of Susceptibility to Acute Pyelonephritis. PLoS ONE, 2007, 2, e825.	1.1	85
26	Podocytes express ADAMTS13 in normal renal cortex and in patients with thrombotic thrombocytopenic purpura. British Journal of Haematology, 2007, 138, 651-662.	1.2	84
27	Mutation analysis and clinical implications of von Willebrand factor–cleaving protease deficiency. Kidney International, 2003, 63, 1995-1999.	2.6	83
28	A common origin of the 4143insA ADAMTS13 mutation. Thrombosis and Haemostasis, 2006, 96, 3-6.	1.8	74
29	A mutation in factor I that is associated with atypical hemolytic uremic syndrome does not affect the function of factor I in complement regulation. Molecular Immunology, 2007, 44, 1835-1844.	1.0	73
30	Pathogen Specific, IRF3-Dependent Signaling and Innate Resistance to Human Kidney Infection. PLoS Pathogens, 2010, 6, e1001109.	2.1	68
31	The Antimicrobial Peptide Cathelicidin Protects Mice from Escherichia coli O157:H7-Mediated Disease. PLoS ONE, 2012, 7, e46476.	1.1	68
32	Shiga Toxin–Induced Complement-Mediated Hemolysis and Release of Complement-Coated Red Blood Cell–Derived Microvesicles in Hemolytic Uremic Syndrome. Journal of Immunology, 2015, 194, 2309-2318.	0.4	65
33	Interleukinâ€8 Receptor Deficiency Confers Susceptibility to Acute Pyelonephritis. Journal of Infectious Diseases, 2001, 183, S56-S60.	1.9	63
34	Crosstalk between the renin–angiotensin, complement and kallikrein–kinin systems in inflammation. Nature Reviews Immunology, 2022, 22, 411-428.	10.6	61
35	CYTOKINE REPERTOIRE OF EPITHELIAL CELLS LINING THE HUMAN URINARY TRACT. Journal of Urology, 1998, 159, 2185-2192.	0.2	60
36	Tissue Deposits of IgA-Binding Streptococcal M Proteins in IgA Nephropathy and Henoch-Schönlein Purpura. American Journal of Pathology, 2010, 176, 608-618.	1.9	60

3

#	Article	IF	CITATIONS
37	Pathophysiology of Typical Hemolytic Uremic Syndrome. Seminars in Thrombosis and Hemostasis, 2010, 36, 575-585.	1.5	59
38	Complement Activation Associated with ADAMTS13 Deficiency in Human and Murine Thrombotic Microangiopathy. Journal of Immunology, 2013, 191, 2184-2193.	0.4	59
39	Aliskiren inhibits renin-mediated complementÂactivation. Kidney International, 2018, 94, 689-700.	2.6	53
40	Shiga Toxin Pathogenesis: Kidney Complications and Renal Failure. Current Topics in Microbiology and Immunology, 2011, 357, 105-136.	0.7	51
41	Neutrophil-Derived Proteinase 3 Induces Kallikrein-Independent Release of a Novel Vasoactive Kinin. Journal of Immunology, 2009, 182, 7906-7915.	0.4	50
42	Complement Interactions with Blood Cells, Endothelial Cells and Microvesicles in Thrombotic and Inflammatory Conditions. Advances in Experimental Medicine and Biology, 2015, 865, 19-42.	0.8	48
43	Platelet Activation in Hemolytic Uremic Syndrome. Seminars in Thrombosis and Hemostasis, 2006, 32, 128-145.	1.5	47
44	The Combined Role of Galactose-Deficient IgA1 and Streptococcal IgA–Binding M Protein in Inducing IL-6 and C3 Secretion from Human Mesangial Cells: Implications for IgA Nephropathy. Journal of Immunology, 2014, 193, 317-326.	0.4	47
45	A Novel C3 Mutation Causing Increased Formation of the C3 Convertase in Familial Atypical Hemolytic Uremic Syndrome. Journal of Immunology, 2012, 188, 2030-2037.	0.4	46
46	Enterohemorrhagic <i>Escherichia coli</i> Pathogenesis and the Host Response. Microbiology Spectrum, 2014, 2, .	1,2	42
47	Microvesicle transfer of kinin B1-receptors is a novel inflammatory mechanism in vasculitis. Kidney International, 2017, 91, 96-105.	2.6	42
48	The â€innate†host response protects and damages the infected urinary tract. Annals of Medicine, 2001, 33, 563-570.	1.5	41
49	Shiga Toxin-Mediated Disease in MyD88-Deficient Mice Infected with Escherichia coli O157:H7. American Journal of Pathology, 2008, 173, 1428-1439.	1.9	41
50	Intestinal damage in enterohemorrhagic Escherichia coli infection. Pediatric Nephrology, 2011, 26, 2059-2071.	0.9	40
51	A novel mutation in the complement regulator clusterin in recurrent hemolytic uremic syndrome. Molecular Immunology, 2009, 46, 2236-2243.	1.0	39
52	Ouabain Protects against Shiga Toxin–Triggered Apoptosis by Reversing the Imbalance between Bax and Bcl-xL. Journal of the American Society of Nephrology: JASN, 2013, 24, 1413-1423.	3.0	37
53	Fimbriae, Transmembrane Signaling, and Cell Activation. Journal of Infectious Diseases, 2001, 183, S47-S50.	1.9	36
54	Contact-system activation in children with vasculitis. Lancet, The, 2002, 360, 535-541.	6.3	35

#	Article	IF	CITATIONS
55	Antibodies to intimin and Escherichia coli secreted proteins A and B in patients with enterohemorrhagic Escherichia coli infections. Pediatric Nephrology, 2002, 17, 201-211.	0.9	35
56	Neonatal onset atypical hemolytic uremic syndrome successfully treated with eculizumab. Pediatric Nephrology, 2013, 28, 155-158.	0.9	35
57	Biologically active ADAMTS13 is expressed in renal tubular epithelial cells. Pediatric Nephrology, 2010, 25, 87-96.	0.9	34
58	Correct evaluation of renal glomerular filtration rate requires clearance assays. Pediatric Nephrology, 2002, 17, 847-851.	0.9	33
59	Thrombotic microangiopathy mimicking membranoproliferative glomerulonephritis. Nephrology Dialysis Transplantation, 2011, 26, 3399-3403.	0.4	33
60	Cross-Reactive Protection against Enterohemorrhagic Escherichia coli Infection by Enteropathogenic E. coli in a Mouse Model. Infection and Immunity, 2011, 79, 2224-2233.	1.0	30
61	C1-Inhibitor Decreases the Release of Vasculitis-Like Chemotactic Endothelial Microvesicles. Journal of the American Society of Nephrology: JASN, 2017, 28, 2472-2481.	3.0	30
62	Microvesicle Involvement in Shiga Toxin-Associated Infection. Toxins, 2017, 9, 376.	1.5	29
63	Bernardâ€Soulier syndrome Karlstad: Trp 498→Stop mutation resulting in a truncated glycoprotein lbα that contains part of the transmembranous domain. British Journal of Haematology, 1997, 98, 57-63.	1.2	28
64	Blockade of the kallikrein-kinin system reduces endothelial complement activation in vascular inflammation. EBioMedicine, 2019, 47, 319-328.	2.7	28
65	Increased platelet retention in familial recurrent thrombotic thrombocytopenic purpura. Kidney International, 1996, 49, 190-199.	2.6	25
66	ADAMTS13 phenotype in plasma from normal individuals and patients with thrombotic thrombocytopenic purpura. European Journal of Pediatrics, 2007, 166, 249-257.	1.3	25
67	Hyperfiltration evaluated by glomerular filtration rate at diagnosis in children with cancer. Pediatric Blood and Cancer, 2011, 56, 762-766.	0.8	25
68	Eculizumab in an anephric patient with atypical haemolytic uraemic syndrome and advanced vascular lesions. Nephrology Dialysis Transplantation, 2013, 28, 2899-2907.	0.4	25
69	Human renal epithelial cells express iNOS in response to cytokines but not bacteria. Kidney International, 2002, 61, 444-455.	2.6	24
70	Orphan drug policies and use in pediatric nephrology. Pediatric Nephrology, 2017, 32, 1-6.	0.9	22
71	Phenotypic Expression of ADAMTS13 in Glomerular Endothelial Cells. PLoS ONE, 2011, 6, e21587.	1.1	19
72	Early Terminal Complement Blockade and C6 Deficiency Are Protective in Enterohemorrhagic <i>Escherichia coliâ€"</i> Infected Mice. Journal of Immunology, 2016, 197, 1276-1286.	0.4	19

#	Article	IF	CITATIONS
73	von Willebrand Factor Mediates Increased Platelet Retention in Recurrent Thrombotic Thrombocytopenic Purpura. Thrombosis and Haemostasis, 1997, 78, 1456-1462.	1.8	19
74	Molecular basis of ADAMTS13 dysfunction in thrombotic thrombocytopenic purpura. Pediatric Nephrology, 2009, 24, 447-458.	0.9	17
75	IgA nephropathy associated with a novel N-terminal mutation in factor H. European Journal of Pediatrics, 2011, 170, 107-110.	1.3	17
76	Management of Shiga toxin-associated Escherichia coli-induced haemolytic uraemic syndrome: randomized clinical trials are needed. Nephrology Dialysis Transplantation, 2012, 27, 3669-3674.	0.4	17
77	Shiga Toxin-Bearing Microvesicles Exert a Cytotoxic Effect on Recipient Cells Only When the Cells Express the Toxin Receptor. Frontiers in Cellular and Infection Microbiology, 2020, 10, 212.	1.8	16
78	Extracellular vesicles in renal inflammatory and infectious diseases. Free Radical Biology and Medicine, 2021, 171, 42-54.	1.3	15
79	Haemolytic uraemic syndrome and thrombotic thrombocytopenic purpura. Current Paediatrics, 2002, 12, 569-574.	0.2	14
80	Factor D Inhibition Blocks Complement Activation Induced by Mutant Factor B Associated With Atypical Hemolytic Uremic Syndrome and Membranoproliferative Glomerulonephritis. Frontiers in Immunology, 2021, 12, 690821.	2.2	13
81	Successful thrombolysis of neonatal bilateral renal vein thrombosis originating in the IVC. Pediatric Nephrology, 2009, 24, 2069-2071.	0.9	12
82	Shiga toxin signals via ATP and its effect is blocked by purinergic receptor antagonism. Scientific Reports, 2019, 9, 14362.	1.6	12
83	Shiga Toxin Uptake and Sequestration in Extracellular Vesicles Is Mediated by Its B-Subunit. Toxins, 2020, 12, 449.	1.5	12
84	Innate Defences and Resistance to Gram Negative Mucosal Infection. , 2000, 485, 9-24.		11
85	Complement contributes to theÂpathogenesis of Shiga toxin–associated hemolytic uremic syndrome. Kidney International, 2016, 90, 726-729.	2.6	11
86	The contact/kinin and complement systems in vasculitis. Apmis, 2009, 117, 48-54.	0.9	10
87	Annexin Induces Cellular Uptake of Extracellular Vesicles and Delays Disease in Escherichia coli O157:H7 Infection. Microorganisms, 2021, 9, 1143.	1.6	10
88	Antibody response to IgA-binding streptococcal M proteins in children with IgA nephropathy. Nephrology Dialysis Transplantation, 2010, 25, 3434-3436.	0.4	8
89	Kinin system activation in vasculitis*. Acta Paediatrica, International Journal of Paediatrics, 2011, 100, 950-957.	0.7	2
90	Neutrophil Protease Cleavage of Von Willebrand Factor in Glomeruli – An Anti-thrombotic Mechanism in the Kidney. EBioMedicine, 2017, 16, 302-311.	2.7	2

#	Article	lF	CITATIONS
91	CYTOKINE REPERTOIRE OF EPITHELIAL CELLS LINING THE HUMAN URINARY TRACT. Journal of Urology, 1998, , 2185-2192.	0.2	2
92	IgG Binds Escherichia coli Serine Protease EspP and Protects Mice From E. coli O157:H7 Infection. Frontiers in Immunology, 2022, 13, 807959.	2.2	2
93	A role for complement blockade in kidney transplantation. , 2022, , .		2
94	Isolation and Characterization of Shiga Toxin-Associated Microvesicles. Methods in Molecular Biology, 2021, 2291, 207-228.	0.4	1
95	EnterohemorrhagicEscherichia coliPathogenesis and the Host Response., 0,, 381-402.		1
96	A link between Kr $\tilde{A}^{1}\!\!/\!\!4$ ppel-like factor 4, complement activation, and kidney damage. Kidney International, 2022, 102, 14-16.	2.6	1
97	Factor H dysfunction contributes to platelet activation in hemolytic uremic syndrome (HUS). Molecular Immunology, 2007, 44, 191-192.	1.0	0
98	Characterization of mutations in complement factor I (CFI) associated with hemolytic uremic syndrome. Molecular Immunology, 2007, 44, 3971.	1.0	0
99	Anguish over angiopathy: Hemolytic uremic syndrome. Clinical Immunology, 2007, 122, 135-138.	1.4	0
100	Clinical and Complement Long-Term Follow-Up of a Pediatric Patient with C3 Mutation-Related Atypical Hemolytic Uremic Syndrome. Case Reports in Nephrology, 2018, 2018, 1-4.	0.2	0