Shahin Rafiee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10627773/publications.pdf

Version: 2024-02-01

31976 60623 7,362 129 53 81 citations h-index g-index papers 131 131 131 4917 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Use of LCA indicators to assess Iranian sugar production systems: case study — Hamadan Province. Biomass Conversion and Biorefinery, 2024, 14, 6759-6772.	4.6	3
2	Evaluation and optimization of engine performance and exhaust emissions of a diesel engine fueled with diestrol blends. Environmental Progress and Sustainable Energy, 2023, 42, .	2.3	2
3	Bridging to circular bioeconomy through a novel biorefinery platform on a wastewater treatment plant. Renewable and Sustainable Energy Reviews, 2022, 154, 111895.	16.4	17
4	Principle of Life Cycle Assessment and Cumulative Exergy Demand for Biodiesel Production: Farm-To-Combustion Approach. Green Energy and Technology, 2022, , 127-169.	0.6	12
5	Introducing new monitoring indices from the headspace of biogas digester via e-nose: A case study. Measurement: Journal of the International Measurement Confederation, 2022, 190, 110769.	5.0	4
6	Ultrasonic Atomizer for Aeroponic Cultivation: Effect of Nutrient Solution Dosage, Voltage, and Horn Dimensions. Journal of Biosystems Engineering, 2022, 47, 130-151.	2.5	2
7	Going beyond conventional wastewater treatment plants within circular bioeconomy concept – a sustainability assessment study. Water Science and Technology, 2022, 85, 1878-1903.	2.5	6
8	A comparative of modeling techniques and life cycle assessment for prediction of output energy, economic profit, and global warming potential for wheat farms. Energy Reports, 2022, 8, 4922-4934.	5.1	63
9	Design of nutrient gas-phase bioreactors: a critical comprehensive review. Bioprocess and Biosystems Engineering, 2022, , $1.$	3.4	1
10	Eco-Efficiency Analysis to Improve Environmental Performance of Wheat Production. Agriculture (Switzerland), 2022, 12, 1031.	3.1	6
11	An integer superstructure model to find a sustainable biorefinery platform for valorizing household waste to bioenergy, microbial protein, and biochemicals. Journal of Cleaner Production, 2021, 278, 123986.	9.3	11
12	Joint analytical hierarchy and metaheuristic optimization as a framework to mitigate fertilizer-based pollution. Journal of Environmental Management, 2021, 278, 111493.	7.8	8
13	Artificial neural networks and adaptive neuro-fuzzy inference system in energy modeling of agricultural products., 2021,, 299-334.		13
14	Exergetic, economic, and environmental life cycle assessment analyses of a heavy-duty tractor diesel engine fueled with diesel–biodiesel-bioethanol blends. Energy Conversion and Management, 2021, 241, 114300.	9.2	36
15	Could biological biogas upgrading be a sustainable substitution for water scrubbing technology? A case study in Denmark. Energy Conversion and Management, 2021, 245, 114550.	9.2	29
16	Use of artificial neural network and adaptive neuro-fuzzy inference system for prediction of biogas production from spearmint essential oil wastewater treatment in up-flow anaerobic sludge blanket reactor. Fuel, 2021, 306, 121734.	6.4	20
17	Development and Evaluation of Combined Adaptive Neuro-Fuzzy Inference System and Multi-Objective Genetic Algorithm in Energy, Economic and Environmental Life Cycle Assessments of Oilseed Production. Sustainability, 2021, 13, 290.	3.2	10
18	Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid. Renewable and Sustainable Energy Reviews, 2020, 117, 109493.	16.4	136

#	Article	IF	CITATIONS
19	Application of life cycle analysis to assess environmental sustainability of wheat cultivation in the west of Iran. Energy, 2020, 193, 116768.	8.8	67
20	A multi-criteria evolutionary-based algorithm as a regional scale decision support system to optimize nitrogen consumption rate; A case study in North China plain. Journal of Cleaner Production, 2020, 256, 120213.	9.3	30
21	Quality detection of pomegranate fruit infected with fungal disease. International Journal of Food Properties, 2020, 23, 9-21.	3.0	21
22	Time–Cost–Quality Trade-Off in a Broiler Production Project Using Meta-Heuristic Algorithms: A Case Study. Agriculture (Switzerland), 2020, 10, 3.	3.1	12
23	Comprehensive model of energy, environmental impacts and economic in rice milling factories by coupling adaptive neuro-fuzzy inference system and life cycle assessment. Journal of Cleaner Production, 2019, 217, 742-756.	9.3	87
24	Assessment of optimized pattern in milling factories of rice production based on energy, environmental and economic objectives. Energy, 2019, 169, 1259-1273.	8.8	65
25	Waste Management Strategies: Life Cycle Assessment (LCA) Approach. Biofuel and Biorefinery Technologies, 2018, , 305-331.	0.3	0
26	Comparative energy, economic and environmental analyses of forage production systems for dairy farming. Journal of Cleaner Production, 2018, 182, 852-862.	9.3	53
27	Life cycle assessment of different strategies for energy and nutrient recovery from source sorted organic fraction of household waste. Journal of Cleaner Production, 2018, 180, 360-374.	9.3	76
28	Integration of artificial intelligence methods and life cycle assessment to predict energy output and environmental impacts of paddy production. Science of the Total Environment, 2018, 631-632, 1279-1294.	8.0	147
29	Well-to-wheel life cycle assessment of Eruca Sativa-based biorefinery. Renewable Energy, 2018, 117, 135-149.	8.9	28
30	Model development for shelled corn drying in a plug flow fluidized bed dryer. Engineering in Agriculture, Environment and Food, 2018, 11 , 1 -8.	0.5	15
31	Quantifying the environmental impacts of alfalfa production in different farming systems. Sustainable Energy Technologies and Assessments, 2018, 27, 109-118.	2.7	11
32	Exergy analysis of an industrial-scale ultrafiltrated (UF) cheese production plant: a detailed survey. Heat and Mass Transfer, 2017, 53, 407-424.	2.1	25
33	Application of multi-objective genetic algorithms for optimization of energy, economics and environmental life cycle assessment in oilseed production. Journal of Cleaner Production, 2017, 140, 804-815.	9.3	102
34	Spatial and technological variability in the carbon footprint of durum wheat production in Iran. International Journal of Life Cycle Assessment, 2017, 22, 1893-1900.	4.7	14
35	Combined application of Life Cycle Assessment and Adaptive Neuro-Fuzzy Inference System for modeling energy and environmental emissions of oilseed production. Renewable and Sustainable Energy Reviews, 2017, 78, 807-820.	16.4	45
36	Use of LCA indicators to assess Iranian rapeseed production systems with different residue management practices. Ecological Indicators, 2017, 80, 31-39.	6.3	39

#	Article	IF	Citations
37	Energy consumption enhancement and environmental life cycle assessment in paddy production using optimization techniques. Journal of Cleaner Production, 2017, 162, 571-586.	9.3	96
38	Response to "Prognostication of energy use and environmental impacts for recycle system of municipal solid waste management― Journal of Cleaner Production, 2017, 164, 1376-1379.	9.3	2
39	Neural network modeling of energy use and greenhouse gas emissions of watermelon production systems. Journal of the Saudi Society of Agricultural Sciences, 2016, 15, 38-47.	1.9	33
40	Environmental impact assessment of olive pomace oil biodiesel production and consumption: A comparative lifecycle assessment. Energy, 2016, 106, 87-102.	8.8	82
41	Energy use pattern and optimization of energy required for broiler production using data envelopment analysis. Information Processing in Agriculture, 2016, 3, 83-91.	4.1	17
42	Real-time monitoring of color variations of apple slices and effects of pre-treatment and drying air temperature. Journal of Food Measurement and Characterization, 2016, 10, 493-506.	3.2	15
43	Sustainability evaluation of pasteurized milk production with a life cycle assessment approach: An Iranian case study. Science of the Total Environment, 2016, 562, 614-627.	8.0	41
44	Determination of efficient and inefficient units for watermelon production-a case study: Guilan province of Iran. Journal of the Saudi Society of Agricultural Sciences, 2016, 15, 162-170.	1.9	17
45	Prophesying egg production based on energy consumption using multi-layered adaptive neural fuzzy inference system approach. Computers and Electronics in Agriculture, 2016, 131, 10-19.	7.7	38
46	Modeling energy consumption and greenhouse gas emissions for kiwifruit production using artificial neural networks. Journal of Cleaner Production, 2016, 133, 924-931.	9.3	59
47	Real-time color change monitoring of apple slices using image processing during intermittent microwave convective drying. Food Science and Technology International, 2016, 22, 634-646.	2.2	15
48	Improving exergetic performance parameters of a rotating-tray air dryer via a simple heat exchanger. Applied Thermal Engineering, 2016, 94, 13-23.	6.0	63
49	Modeling of moisture diffusivity, activation energy and energy consumption in fluidized bed drying of rough rice. Heat and Mass Transfer, 2016, 52, 2541-2549.	2.1	41
50	Resource management in cropping systems using artificial intelligence techniques: a case study of orange orchards in north of Iran. Stochastic Environmental Research and Risk Assessment, 2016, 30, 413-427.	4.0	45
51	Optimization of intermittent microwave–convective drying using response surface methodology. Food Science and Nutrition, 2015, 3, 331-341.	3.4	31
52	On the study of energy and cost analyses of orange production in Mazandaran province. Sustainable Energy Technologies and Assessments, 2015, 10, 22-28.	2.7	21
53	Comparative life cycle assessment of different municipal solid waste management scenarios in Iran. Renewable and Sustainable Energy Reviews, 2015, 51, 886-898.	16.4	88
54	Developing a fuzzy clustering model for better energy use in farm management systems. Renewable and Sustainable Energy Reviews, 2015, 48, 27-34.	16.4	28

#	Article	IF	Citations
55	Detection of Adulteration in Saffron Samples Using Electronic Nose. International Journal of Food Properties, 2015, 18, 1391-1401.	3.0	119
56	Modeling and Simulation of Deep-Bed Solar Greenhouse Drying of Chamomile Flowers. Drying Technology, 2015, 33, 684-695.	3.1	24
57	Continuous real-time monitoring and neural network modeling of apple slices color changes during hot air drying. Food and Bioproducts Processing, 2015, 94, 263-274.	3.6	91
58	Joint Life Cycle Assessment and Data Envelopment Analysis for the benchmarking of environmental impacts in rice paddy production. Journal of Cleaner Production, 2015, 106, 521-532.	9.3	118
59	Computer Vision System (CVS) for In-Line Monitoring of Visual Texture Kinetics During Shrimp (<i>Penaeus</i> Spp.) Drying. Drying Technology, 2015, 33, 238-254.	3.1	19
60	Optimization on drying conditions of a solar electrohydrodynamic drying system based on desirability concept. Food Science and Nutrition, 2014, 2, 758-767.	3.4	14
61	Optimization of energy required and greenhouse gas emissions analysis for orange producers using data envelopment analysis approach. Journal of Cleaner Production, 2014, 65, 311-317.	9.3	138
62	Comparison of energy consumption and GHG emissions of open field and greenhouse strawberry production. Renewable and Sustainable Energy Reviews, 2014, 29, 316-324.	16.4	90
63	Environmental impact assessment of tomato and cucumber cultivation in greenhouses using life cycle assessment and adaptive neuro-fuzzy inference system. Journal of Cleaner Production, 2014, 73, 183-192.	9.3	148
64	Energy-economic life cycle assessment (LCA) and greenhouse gas emissions analysis of olive oil production in Iran. Energy, 2014, 66, 139-149.	8.8	95
65	Energy and cost analyses of biodiesel production from waste cooking oil. Renewable and Sustainable Energy Reviews, 2014, 33, 44-49.	16.4	158
66	Development of an intelligent system based on ANFIS for predicting wheat grain yield on the basis of energy inputs. Information Processing in Agriculture, 2014, 1, 14-22.	4.1	87
67	Application of artificial neural networks for prediction of output energy and GHG emissions in potato production in Iran. Agricultural Systems, 2014, 123, 120-127.	6.1	63
68	Energy use efficiency and greenhouse gas emissions of farming systems in north Iran. Renewable and Sustainable Energy Reviews, 2014, 30, 724-733.	16.4	126
69	Image analysis and green tea color change kinetics during thin-layer drying. Food Science and Technology International, 2014, 20, 465-476.	2.2	22
70	Application of multi-layer adaptive neuro-fuzzy inference system for estimation of greenhouse strawberry yield. Measurement: Journal of the International Measurement Confederation, 2014, 47, 903-910.	5.0	50
71	Prediction of potato yield based on energy inputs using multi-layer adaptive neuro-fuzzy inference system. Measurement: Journal of the International Measurement Confederation, 2014, 47, 521-530.	5.0	58
72	Modeling of electrohydrodynamic drying process using response surface methodology. Food Science and Nutrition, 2014, 2, 200-209.	3.4	28

#	Article	IF	Citations
73	Modeling output energy based on fossil fuels and electricity energy consumption on dairy farms of Iran: Application of adaptive neural-fuzzy inference system technique. Computers and Electronics in Agriculture, 2014, 109, 80-85.	7.7	47
74	A novel image processing approach for in-line monitoring of visual texture during shrimp drying. Journal of Food Engineering, 2014, 143, 154-166.	5.2	24
75	Applying data envelopment analysis approach to improve energy efficiency and reduce greenhouse gas emission of rice production. Engineering in Agriculture, Environment and Food, 2014, 7, 155-162.	0.5	48
76	Numerical simulation and experimental investigation of plug-flow fluidized bed drying under dynamic conditions. Journal of Food Engineering, 2014, 137, 64-75.	5. 2	11
77	Fish oil microencapsulation as influenced by spray dryer operational variables. International Journal of Food Science and Technology, 2013, 48, 1707-1713.	2.7	58
78	Experimental Investigation and Modeling of Plug-Flow Fluidized Bed Drying Under Steady-State Conditions. Drying Technology, 2013, 31, 414-432.	3.1	12
79	An artificial neural network for predicting the physiochemical properties of fish oil microcapsules obtained by spray drying. Food Science and Biotechnology, 2013, 22, 677-685.	2.6	17
80	Prognostication of environmental indices in potato production using artificial neural networks. Journal of Cleaner Production, 2013, 52, 402-409.	9.3	71
81	Reduction of CO2 emission by improving energy use efficiency ofÂgreenhouse cucumber production using DEA approach. Energy, 2013, 55, 676-682.	8.8	113
82	Applying data envelopment analysis approach to improve energy efficiency and reduce GHG (greenhouse gas) emission of wheat production. Energy, 2013, 58, 588-593.	8.8	97
83	Potential greenhouse gas emission reductions in soybean farming: aÂcombined use of Life Cycle Assessment and Data Envelopment Analysis. Journal of Cleaner Production, 2013, 54, 89-100.	9.3	147
84	Modeling of Basil Leaves Drying by GA–ANN. International Journal of Food Engineering, 2013, 9, 393-401.	1.5	7
85	Energy use pattern and sensitivity analysis of energy inputs and input costs for pear production in Iran. Renewable Energy, 2013, 51, 7-12.	8.9	52
86	Influence of Wall Material and Inlet Drying Air Temperature on the Microencapsulation of Fish Oil by Spray Drying. Food and Bioprocess Technology, 2013, 6, 1561-1569.	4.7	149
87	A review on exergy analysis of drying processes and systems. Renewable and Sustainable Energy Reviews, 2013, 22, 1-22.	16.4	188
88	Environmental impact assessment of open field and greenhouse strawberry production. European Journal of Agronomy, 2013, 50, 29-37.	4.1	97
89	Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks. Energy, 2013, 52, 333-338.	8.8	165
90	Energy and economic assessment of prune production in Tehran province of Iran. Journal of Cleaner Production, 2013, 39, 280-284.	9.3	33

#	Article	IF	CITATIONS
91	Application of computer vision technique for on-line monitoring of shrimp color changes during drying. Journal of Food Engineering, 2013, 115, 99-114.	5.2	81
92	Exergetic performance assessment of plug flow fluidised bed drying process of rough rice. International Journal of Exergy, 2013, 13, 387.	0.4	66
93	Application of artificial neural network to model the energy output of dairy farms in Iran. International Journal of Energy Technology and Policy, 2013, 9, 82.	0.2	10
94	Regression modeling of field emissions in wheat production using a life cycle assessment (LCA) approach. Electronic Journal of Energy & Environment, 2013, 1 , .	0.3	2
95	Integrated optimization of fish oil microencapsulation process by spray drying. Journal of Microencapsulation, 2012, 29, 790-804.	2.8	29
96	Assessing the Technical Efficiency in Potato Production in Iran. International Journal of Green Energy, 2012, 9, 229-242.	3.8	7
97	Influence of spray dryer parameters on exergetic performance of microencapsulation processs. International Journal of Exergy, 2012, 10, 267.	0.4	40
98	The correlation of wall material composition with flow characteristics and encapsulation behavior of fish oil emulsion. Food Research International, 2012, 49, 379-388.	6.2	92
99	Optimization in energy consumption of carnation production using data envelopment analysis (DEA). Energy Systems, 2012, 3, 325-339.	3.0	7
100	A source-wise and operation-wise energy use analysis for corn silage production, a case study of Tehran province, Iran. International Journal of Sustainable Built Environment, 2012, 1, 158-166.	3.2	16
101	An analysis of energy use and relation between energy inputs and yield in tangerine production. Renewable and Sustainable Energy Reviews, 2012, 16, 4515-4521.	16.4	62
102	The use of artificial neural network to predict exergetic performance of spray drying process: A preliminary study. Computers and Electronics in Agriculture, 2012, 88, 32-43.	7.7	65
103	Energy consumption flow and econometric models of two plum cultivars productions in Tehran province of Iran. Energy, 2012, 44, 211-216.	8.8	51
104	Optimization of energy consumption for rose production in Iran. Energy for Sustainable Development, 2012, 16, 236-241.	4.5	47
105	Energy and exergy analyses of the spray drying process of fish oil microencapsulation. Biosystems Engineering, 2012, 111, 229-241.	4.3	131
106	Optimization of emulsification procedure for mutual maximizing the encapsulation and exergy efficiencies of fish oil microencapsulation. Powder Technology, 2012, 225, 107-117.	4.2	78
107	Assessing the technical efficiency of energy use in different barberry production systems. Journal of Cleaner Production, 2012, 27, 126-132.	9.3	54
108	Modeling of moisture content in tomato drying procces by ANN-GA technique. , 2011, , .		0

#	Article	IF	Citations
109	Application of Image Processing to Analyze Shrinkage and Shape Changes of Shrimp Batch during Drying. Drying Technology, 2011, 29, 1416-1438.	3.1	46
110	Optimization of an Artificial Neural Network Topology for Predicting Drying Kinetics of Carrot Cubes Using Combined Response Surface and Genetic Algorithm. Drying Technology, 2011, 29, 770-779.	3.1	42
111	An Analysis of Energy Use and Estimation of a Mechanization Index of Garlic Production in Iran. Journal of Agricultural Science, 2011, 3, .	0.2	4
112	Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach. Energy, 2011, 36, 2765-2772.	8.8	138
113	Improving energy productivity of sunflower production using data envelopment analysis (DEA) approach. Journal of the Science of Food and Agriculture, 2011, 91, 1885-1892.	3.5	25
114	Optimization of energy consumption and input costs for apple production in Iran using data envelopment analysis. Energy, 2011, 36, 909-916.	8.8	90
115	Energy inputs and crop yield relationship in potato production in Hamadan province of Iran. Energy, 2011, 36, 2367-2371.	8.8	60
116	Optimization of energy consumption for soybean production using Data Envelopment Analysis (DEA) approach. Applied Energy, 2011, 88, 3765-3772.	10.1	132
117	Energy flow modeling and sensitivity analysis of inputs for canola production in Iran. Journal of Cleaner Production, 2011, 19, 1464-1470.	9.3	107
118	Energy efficiency improvement and input cost saving in kiwifruit production using Data Envelopment Analysis approach. Renewable Energy, 2011, 36, 2573-2579.	8.9	87
119	An analysis of energy use and relation between energy inputs and yield, costs and income of garlic production in Iran. Renewable Energy, 2011, 36, 1808-1813.	8.9	78
120	The Functional Relationship Between Energy Inputs and Yield Value of Soybean Production in Iran. International Journal of Green Energy, 2011, 8, 398-410.	3.8	13
121	A Traveling Time Model as Function of Water Density and Vegetable Size, Shape and Density. Journal of Fruit and Ornamental Plant Research, 2010, 73, 143-149.	0.4	2
122	Sensitivity analysis of energy inputs for barley production in Hamedan Province of Iran. Agriculture, Ecosystems and Environment, 2010, 137, 367-372.	5.3	180
123	Energy inputs – yield relationship and cost analysis of kiwifruit production in Iran. Renewable Energy, 2010, 35, 1071-1075.	8.9	175
124	Modeling and sensitivity analysis of energy inputs for apple production in Iran. Energy, 2010, 35, 3301-3306.	8.8	248
125	Determination of canola losses in harvest operation with three types of heads., 2010,,.		0
126	Modeling of Dropping Time of Kiwi Fruit in Water. International Journal of Food Properties, 2010, 13, 1315-1322.	3.0	4

#	Article	IF	CITATIONS
127	Modeling Effective Moisture Diffusivity of Orange Slice (Thompson Cv.). International Journal of Food Properties, 2010, 13, 32-40.	3.0	54
128	Energy use and economical analysis of potato production in Iran a case study: Ardabil province. Energy Conversion and Management, 2008, 49, 3566-3570.	9.2	254
129	Modeling Effective Moisture Diffusivity of Wheat (<i>Tajan</i>) During Air Drying. International Journal of Food Properties, 2008, 11, 223-232.	3.0	18