
## William A Goddard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10627590/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | DREIDING: a generic force field for molecular simulations. The Journal of Physical Chemistry, 1990, 94, 8897-8909.                                                                                                                                          | 2.9  | 5,555     |
| 2  | ReaxFF:Â A Reactive Force Field for Hydrocarbons. Journal of Physical Chemistry A, 2001, 105, 9396-9409.                                                                                                                                                    | 1.1  | 4,490     |
| 3  | Starburst Dendrimers: Molecular-Level Control of Size, Shape, Surface Chemistry, Topology, and<br>Flexibility from Atoms to Macroscopic Matter. Angewandte Chemie International Edition in English,<br>1990, 29, 138-175.                                   | 4.4  | 3,032     |
| 4  | Charge equilibration for molecular dynamics simulations. The Journal of Physical Chemistry, 1991, 95, 3358-3363.                                                                                                                                            | 2.9  | 2,910     |
| 5  | Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Molecular<br>Physics, 2015, 113, 184-215.                                                                                                                                | 0.8  | 2,561     |
| 6  | Silicon nanowires as efficient thermoelectric materials. Nature, 2008, 451, 168-171.                                                                                                                                                                        | 13.7 | 2,493     |
| 7  | ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation. Journal of Physical Chemistry A, 2008, 112, 1040-1053.                                                                                                             | 1.1  | 1,892     |
| 8  | Catalysis Research of Relevance to Carbon Management:  Progress, Challenges, and Opportunities.<br>Chemical Reviews, 2001, 101, 953-996.                                                                                                                    | 23.0 | 1,311     |
| 9  | Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science, 2016, 354, 1414-1419.                                                                                                                        | 6.0  | 1,292     |
| 10 | Accurate First Principles Calculation of Molecular Charge Distributions and Solvation Energies from<br>Ab Initio Quantum Mechanics and Continuum Dielectric Theory. Journal of the American Chemical<br>Society, 1994, 116, 11875-11882.                    | 6.6  | 1,026     |
| 11 | Thermal conductivity of carbon nanotubes. Nanotechnology, 2000, 11, 65-69.                                                                                                                                                                                  | 1.3  | 988       |
| 12 | From The Cover: The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2673-2677. | 3.3  | 863       |
| 13 | ReaxFFSiO Reactive Force Field for Silicon and Silicon Oxide Systems. Journal of Physical Chemistry A, 2003, 107, 3803-3811.                                                                                                                                | 1.1  | 821       |
| 14 | Covalent Organic Frameworks as Exceptional Hydrogen Storage Materials. Journal of the American<br>Chemical Society, 2008, 130, 11580-11581.                                                                                                                 | 6.6  | 746       |
| 15 | Linear Artificial Molecular Muscles. Journal of the American Chemical Society, 2005, 127, 9745-9759.                                                                                                                                                        | 6.6  | 660       |
| 16 | Theoretical predictions for hot-carrier generation from surface plasmon decay. Nature Communications, 2014, 5, 5788.                                                                                                                                        | 5.8  | 600       |
| 17 | Field-effect transistors made from solution-grown two-dimensional tellurene. Nature Electronics, 2018, 1, 228-236.                                                                                                                                          | 13.1 | 591       |
| 18 | Predictions of Hole Mobilities in Oligoacene Organic Semiconductors from Quantum Mechanical<br>Calculationsâ€. Journal of Physical Chemistry B, 2004, 108, 8614-8621.                                                                                       | 1.2  | 586       |

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Excited States of H2O using improved virtual orbitals. Chemical Physics Letters, 1969, 3, 414-418.                                                                                                                                               | 1.2  | 579       |
| 20 | Calculation of Solvation Free Energies of Charged Solutes Using Mixed Cluster/Continuum Models.<br>Journal of Physical Chemistry B, 2008, 112, 9709-9719.                                                                                        | 1.2  | 567       |
| 21 | Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates.<br>Nature Nanotechnology, 2010, 5, 61-66.                                                                                                         | 15.6 | 567       |
| 22 | Temperature Dependence of Blue Phosphorescent Cyclometalated Ir(III) Complexes. Journal of the American Chemical Society, 2009, 131, 9813-9822.                                                                                                  | 6.6  | 558       |
| 23 | Recent advances on simulation and theory of hydrogen storage in metal–organic frameworks and covalent organic frameworks. Chemical Society Reviews, 2009, 38, 1460.                                                                              | 18.7 | 535       |
| 24 | Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry.<br>ACS Nano, 2016, 10, 957-966.                                                                                                                 | 7.3  | 534       |
| 25 | Phosphofructokinase 1 Glycosylation Regulates Cell Growth and Metabolism. Science, 2012, 337, 975-980.                                                                                                                                           | 6.0  | 527       |
| 26 | Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. Journal of Chemical Physics, 2021, 155, 084801.                                                                                            | 1.2  | 518       |
| 27 | Starburst dendrimers. 5. Molecular shape control. Journal of the American Chemical Society, 1989, 111, 2339-2341.                                                                                                                                | 6.6  | 500       |
| 28 | Shock Waves in High-Energy Materials: The Initial Chemical Events in Nitramine RDX. Physical Review<br>Letters, 2003, 91, 098301.                                                                                                                | 2.9  | 495       |
| 29 | Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nature<br>Chemical Biology, 2006, 2, 467-473.                                                                                                                | 3.9  | 494       |
| 30 | Oxidative Aliphatic C-H Fluorination with Fluoride Ion Catalyzed by a Manganese Porphyrin. Science, 2012, 337, 1322-1325.                                                                                                                        | 6.0  | 478       |
| 31 | Starburstâ€Đendrimere: Kontrolle von Größe, Gestalt, Oberflähenchemie, Topologie und Flexibilitä<br>beim œbergang von Atomen zu makroskopischer Materie. Angewandte Chemie, 1990, 102, 119-157.                                                  | 1.6  | 473       |
| 32 | Generalized valence bond description of bonding in low-lying states of molecules. Accounts of<br>Chemical Research, 1973, 6, 368-376.                                                                                                            | 7.6  | 467       |
| 33 | Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional<br>electrocatalysis. Nature Catalysis, 2019, 2, 495-503.                                                                                                    | 16.1 | 464       |
| 34 | Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among<br>alkali and alkaline earth metals. Proceedings of the National Academy of Sciences of the United States<br>of America, 2016, 113, 3735-3739. | 3.3  | 462       |
| 35 | Structure of PAMAM Dendrimers:Â Generations 1 through 11. Macromolecules, 2004, 37, 6236-6254.                                                                                                                                                   | 2.2  | 455       |
| 36 | A bonding model for gold(I) carbene complexes. Nature Chemistry, 2009, 1, 482-486.                                                                                                                                                               | 6.6  | 451       |

| #  | Article                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes.<br>Nanotechnology, 1998, 9, 184-191.                                                                                                                          | 1.3  | 448       |
| 38 | Accurate Band Gaps for Semiconductors from Density Functional Theory. Journal of Physical Chemistry Letters, 2011, 2, 212-217.                                                                                                                                | 2.1  | 444       |
| 39 | Schottky-Barrier-Free Contacts with Two-Dimensional Semiconductors by Surface-Engineered MXenes.<br>Journal of the American Chemical Society, 2016, 138, 15853-15856.                                                                                         | 6.6  | 444       |
| 40 | Mechanically bonded macromolecules. Chemical Society Reviews, 2010, 39, 17-29.                                                                                                                                                                                | 18.7 | 428       |
| 41 | The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics:<br>Validation for the phase diagram of Lennard-Jones fluids. Journal of Chemical Physics, 2003, 119,<br>11792-11805.                                         | 1.2  | 426       |
| 42 | Nanophase-Segregation and Transport in Nafion 117 from Molecular Dynamics Simulations:Â Effect of<br>Monomeric Sequence. Journal of Physical Chemistry B, 2004, 108, 3149-3157.                                                                               | 1.2  | 425       |
| 43 | Lithium-Doped Metal-Organic Frameworks for Reversible H <sub>2</sub> Storage at Ambient<br>Temperature. Journal of the American Chemical Society, 2007, 129, 8422-8423.                                                                                       | 6.6  | 418       |
| 44 | Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio<br>molecular dynamics free-energy calculations at 298 K. Proceedings of the National Academy of<br>Sciences of the United States of America, 2017, 114, 1795-1800. | 3.3  | 414       |
| 45 | Acceleration of convergence for lattice sums. The Journal of Physical Chemistry, 1989, 93, 7320-7327.                                                                                                                                                         | 2.9  | 405       |
| 46 | Atomic level simulations on a million particles: The cell multipole method for Coulomb and London nonbond interactions. Journal of Chemical Physics, 1992, 97, 4309-4315.                                                                                     | 1.2  | 404       |
| 47 | ReaxFF- <i>l</i> g: Correction of the ReaxFF Reactive Force Field for London Dispersion, with<br>Applications to the Equations of State for Energetic Materials. Journal of Physical Chemistry A, 2011,<br>115, 11016-11022.                                  | 1.1  | 401       |
| 48 | Oxidation of Methanol on 2nd and 3rd Row Group VIII Transition Metals (Pt, Ir, Os, Pd, Rh, and Ru):<br>Application to Direct Methanol Fuel Cells. Journal of the American Chemical Society, 1999, 121,<br>10928-10941.                                        | 6.6  | 397       |
| 49 | Simulations on the Thermal Decomposition of a Poly(dimethylsiloxane) Polymer Using the ReaxFF<br>Reactive Force Field. Journal of the American Chemical Society, 2005, 127, 7192-7202.                                                                        | 6.6  | 395       |
| 50 | Oxygenâ€Vacancy Abundant Ultrafine Co <sub>3</sub> O <sub>4</sub> /Graphene Composites for Highâ€Rate<br>Supercapacitor Electrodes. Advanced Science, 2018, 5, 1700659.                                                                                       | 5.6  | 392       |
| 51 | Development of the ReaxFF Reactive Force Field for Describing Transition Metal Catalyzed Reactions, with Application to the Initial Stages of the Catalytic Formation of Carbon Nanotubes. Journal of Physical Chemistry A, 2005, 109, 493-499.               | 1.1  | 390       |
| 52 | Effect of Solvent and pH on the Structure of PAMAM Dendrimers. Macromolecules, 2005, 38, 979-991.                                                                                                                                                             | 2.2  | 389       |
| 53 | Synergy between Fe and Ni in the optimal performance of (Ni,Fe)OOH catalysts for the oxygen evolution reaction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5872-5877.                                        | 3.3  | 380       |
| 54 | Thermal decomposition of RDX from reactive molecular dynamics. Journal of Chemical Physics, 2005, 122, 054502.                                                                                                                                                | 1.2  | 366       |

| #  | Article                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Subsurface oxide plays a critical role in CO <sub>2</sub> activation by Cu(111) surfaces to form chemisorbed CO <sub>2</sub> , the first step in reduction of CO <sub>2</sub> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6706-6711. | 3.3  | 363       |
| 56 | Melting and crystallization in Ni nanoclusters: The mesoscale regime. Journal of Chemical Physics, 2001, 115, 385-394.                                                                                                                                                                 | 1.2  | 345       |
| 57 | Doubly hybrid density functional for accurate descriptions of nonbond interactions,<br>thermochemistry, and thermochemical kinetics. Proceedings of the National Academy of Sciences of<br>the United States of America, 2009, 106, 4963-4968.                                         | 3.3  | 332       |
| 58 | Evaluation of B3LYP, X3LYP, and M06-Class Density Functionals for Predicting the Binding Energies of<br>Neutral, Protonated, and Deprotonated Water Clusters. Journal of Chemical Theory and Computation,<br>2009, 5, 1016-1026.                                                       | 2.3  | 326       |
| 59 | Monolayer atomic crystal molecular superlattices. Nature, 2018, 555, 231-236.                                                                                                                                                                                                          | 13.7 | 323       |
| 60 | Prediction of fullerene packing in C60 and C70 crystals. Nature, 1991, 351, 464-467.                                                                                                                                                                                                   | 13.7 | 312       |
| 61 | Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. Nature Communications, 2016, 7, 12765.                                                                                                                      | 5.8  | 312       |
| 62 | Thermal conductivity of diamond and related materials from molecular dynamics simulations. Journal of Chemical Physics, 2000, 113, 6888-6900.                                                                                                                                          | 1.2  | 307       |
| 63 | New Alkali Doped Pillared Carbon Materials Designed to Achieve Practical Reversible Hydrogen<br>Storage for Transportation. Physical Review Letters, 2004, 92, 166103.                                                                                                                 | 2.9  | 307       |
| 64 | Toward a Lithium–"Air―Battery: The Effect of CO <sub>2</sub> on the Chemistry of a Lithium–Oxygen<br>Cell. Journal of the American Chemical Society, 2013, 135, 9733-9742.                                                                                                             | 6.6  | 307       |
| 65 | Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4.<br>Nature Catalysis, 2020, 3, 804-812.                                                                                                                                                 | 16.1 | 298       |
| 66 | First-Principles Investigation of Anistropic Hole Mobilities in Organic Semiconductors. Journal of<br>Physical Chemistry B, 2009, 113, 8813-8819.                                                                                                                                      | 1.2  | 292       |
| 67 | Development and Validation of ReaxFF Reactive Force Field for Hydrocarbon Chemistry Catalyzed by<br>Nickel. Journal of Physical Chemistry C, 2010, 114, 4939-4949.                                                                                                                     | 1.5  | 288       |
| 68 | Entropy and the driving force for the filling of carbon nanotubes with water. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11794-11798.                                                                                                 | 3.3  | 287       |
| 69 | Radically enhanced molecular recognition. Nature Chemistry, 2010, 2, 42-49.                                                                                                                                                                                                            | 6.6  | 280       |
| 70 | Two-Phase Thermodynamic Model for Efficient and Accurate Absolute Entropy of Water from<br>Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2010, 114, 8191-8198.                                                                                                      | 1.2  | 277       |
| 71 | Prediction of structure and function of G protein-coupled receptors. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12622-12627.                                                                                                           | 3.3  | 276       |
| 72 | In Silico Discovery of New Dopants for Fe-Doped Ni Oxyhydroxide<br>(Ni <sub>1–<i>x</i></sub> Fe <sub><i>x</i></sub> OOH) Catalysts for Oxygen Evolution Reaction.<br>Journal of the American Chemical Society, 2018, 140, 6745-6748.                                                   | 6.6  | 274       |

| #  | Article                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Mechanism of Câ^'F Reductive Elimination from Palladium(IV) Fluorides. Journal of the American<br>Chemical Society, 2010, 132, 3793-3807.                                                                                                                                                 | 6.6 | 273       |
| 74 | Dendrimer Enhanced Ultrafiltration. 1. Recovery of Cu(II) from Aqueous Solutions Using PAMAM<br>Dendrimers with Ethylene Diamine Core and Terminal NH2Groups. Environmental Science &<br>Technology, 2005, 39, 1366-1377.                                                                 | 4.6 | 272       |
| 75 | Improved Quantum Theory of Many-Electron Systems. II. The Basic Method. Physical Review, 1967, 157, 81-93.                                                                                                                                                                                | 2.7 | 269       |
| 76 | Strain Rate Induced Amorphization in Metallic Nanowires. Physical Review Letters, 1999, 82, 2900-2903.                                                                                                                                                                                    | 2.9 | 268       |
| 77 | Source of Image Contrast in STM Images of Functionalized Alkanes on Graphite:Â A Systematic<br>Functional Group Approach. Journal of Physical Chemistry B, 1997, 101, 5978-5995.                                                                                                          | 1.2 | 267       |
| 78 | New surfactant classes for enhanced oil recovery and their tertiary oil recovery potential. Journal of Petroleum Science and Engineering, 2010, 71, 23-29.                                                                                                                                | 2.1 | 264       |
| 79 | Electronicâ^'Mechanical Coupling in Graphene from in situ Nanoindentation Experiments and Multiscale Atomistic Simulations. Nano Letters, 2011, 11, 1241-1246.                                                                                                                            | 4.5 | 261       |
| 80 | Carbon Cluster Formation during Thermal Decomposition of<br>Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-Triamino-2,4,6-trinitrobenzene High Explosives<br>from ReaxFF Reactive Molecular Dynamics Simulations. Journal of Physical Chemistry A, 2009, 113,<br>10619-10640. | 1.1 | 257       |
| 81 | Antibody Catalysis of the Oxidation of Water. Science, 2001, 293, 1806-1811.                                                                                                                                                                                                              | 6.0 | 254       |
| 82 | Ab initiostudies of the x-ray absorption edge in copper complexes. I. AtomicCu2+and Cu(ii)Cl2. Physical Review B, 1980, 22, 2767-2776.                                                                                                                                                    | 1.1 | 252       |
| 83 | Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals: Cu-Ag<br>and Cu-Ni. Physical Review B, 1999, 59, 3527-3533.                                                                                                                                | 1.1 | 252       |
| 84 | Olefin metathesis - a mechanistic study of high-valent Group VI catalysts. Journal of the American<br>Chemical Society, 1982, 104, 448-456.                                                                                                                                               | 6.6 | 251       |
| 85 | PAMAM Dendrimers Undergo pH Responsive Conformational Changes without Swelling. Journal of the American Chemical Society, 2009, 131, 2798-2799.                                                                                                                                           | 6.6 | 249       |
| 86 | Molecular Dynamics Study of a Surfactant-Mediated Decaneâ^'Water Interface:  Effect of Molecular<br>Architecture of Alkyl Benzene Sulfonate. Journal of Physical Chemistry B, 2004, 108, 12130-12140.                                                                                     | 1.2 | 244       |
| 87 | The Mechanism for Unimolecular Decomposition of RDX (1,3,5-Trinitro-1,3,5-triazine), an ab Initio Study.<br>Journal of Physical Chemistry A, 2000, 104, 2261-2272.                                                                                                                        | 1.1 | 241       |
| 88 | Bimetallic Reductive Elimination from Dinuclear Pd(III) Complexes. Journal of the American Chemical Society, 2010, 132, 14092-14103.                                                                                                                                                      | 6.6 | 237       |
| 89 | ReaxFFMgHReactive Force Field for Magnesium Hydride Systems. Journal of Physical Chemistry A, 2005, 109, 851-859.                                                                                                                                                                         | 1.1 | 234       |
| 90 | Theoretical studies of oxidative addition and reductive elimination. 2. Reductive coupling of<br>hydrogen-hydrogen, hydrogen-carbon, and carbon-carbon bonds from palladium and platinum<br>complexes. Organometallics, 1986, 5, 609-622.                                                 | 1.1 | 228       |

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Molecular dynamics study of the binaryCu46Zr54metallic glass motivated by experiments: Glass formation and atomic-level structure. Physical Review B, 2005, 71, .                                                                    | 1.1 | 227       |
| 92  | Self-Assembled Monolayer Mechanism for Corrosion Inhibition of Iron by Imidazolines. Langmuir, 1996, 12, 6419-6428.                                                                                                                  | 1.6 | 225       |
| 93  | Formation of carbon–nitrogen bonds in carbon monoxide electrolysis. Nature Chemistry, 2019, 11,<br>846-851.                                                                                                                          | 6.6 | 223       |
| 94  | Improved Quantum Theory of Many-Electron Systems. I. Construction of Eigenfunctions ofS^2Which Satisfy Pauli's Principle. Physical Review, 1967, 157, 73-80.                                                                         | 2.7 | 222       |
| 95  | Configuration interaction studies of O3 and O+3. Ground and excited states. Journal of Chemical Physics, 1975, 62, 3912-3924.                                                                                                        | 1.2 | 221       |
| 96  | Multiparadigm Modeling of Dynamical Crack Propagation in Silicon Using a Reactive Force Field.<br>Physical Review Letters, 2006, 96, 095505.                                                                                         | 2.9 | 214       |
| 97  | Initiation Mechanisms and Kinetics of Pyrolysis and Combustion of JP-10 Hydrocarbon Jet Fuel. Journal of Physical Chemistry A, 2009, 113, 1740-1746.                                                                                 | 1.1 | 213       |
| 98  | Improved Designs of Metal–Organic Frameworks for Hydrogen Storage. Angewandte Chemie -<br>International Edition, 2007, 46, 6289-6292.                                                                                                | 7.2 | 212       |
| 99  | Phosphoramidite Gold(I)-Catalyzed Diastereo- and Enantioselective Synthesis of 3,4-Substituted Pyrrolidines. Journal of the American Chemical Society, 2011, 133, 5500-5507.                                                         | 6.6 | 210       |
| 100 | Improved Quantum Theory of Manyâ€Electron Systems. V. The Spinâ€Coupling Optimized GI Method. Journal of Chemical Physics, 1969, 51, 1073-1087.                                                                                      | 1.2 | 207       |
| 101 | Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the<br>Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0. Journal of Physical Chemistry<br>Letters, 2015, 6, 4767-4773. | 2.1 | 206       |
| 102 | Stabilizing Highly Active Ru Sites by Suppressing Lattice Oxygen Participation in Acidic Water Oxidation. Journal of the American Chemical Society, 2021, 143, 6482-6490.                                                            | 6.6 | 204       |
| 103 | Dendritic Chelating Agents. 1. Cu(II) Binding to Ethylene Diamine Core Poly(amidoamine) Dendrimers in<br>Aqueous Solutions. Langmuir, 2004, 20, 2640-2651.                                                                           | 1.6 | 200       |
| 104 | Resolution of the Band Gap Prediction Problem for Materials Design. Journal of Physical Chemistry<br>Letters, 2016, 7, 1198-1203.                                                                                                    | 2.1 | 200       |
| 105 | Poly(amidoamine) Dendrimers:  A New Class of High Capacity Chelating Agents for Cu(II) Ions.<br>Environmental Science & Technology, 1999, 33, 820-824.                                                                               | 4.6 | 198       |
| 106 | Theoretical Study of Solvent Effects on the Platinum-Catalyzed Oxygen Reduction Reaction. Journal of Physical Chemistry Letters, 2010, 1, 856-861.                                                                                   | 2.1 | 195       |
| 107 | pKaValues of Guanine in Water:Â Density Functional Theory Calculations Combined with<br>Poissonâ^Boltzmann Continuumâ^Solvation Model. Journal of Physical Chemistry B, 2003, 107, 344-357.                                          | 1.2 | 193       |
| 108 | The Self-Consistent Field Equations for Generalized Valence Bond and Open-Shell Hartree—Fock Wave Functions. , 1977, , 79-127.                                                                                                       |     | 193       |

| #   | Article                                                                                                                                                                                          | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Ultrahigh Mass Activity for Carbon Dioxide Reduction Enabled by Gold–Iron Core–Shell<br>Nanoparticles. Journal of the American Chemical Society, 2017, 139, 15608-15611.                         | 6.6  | 191       |
| 110 | Oxygen evolution reaction over catalytic single-site Co in a well-defined brookite TiO2 nanorod surface. Nature Catalysis, 2021, 4, 36-45.                                                       | 16.1 | 189       |
| 111 | Defect-enriched iron fluoride-oxide nanoporous thin films bifunctional catalyst for water splitting.<br>Nature Communications, 2018, 9, 1809.                                                    | 5.8  | 188       |
| 112 | First Principles Calculation of pKa Values for 5-Substituted Uracils. Journal of Physical Chemistry A, 2001, 105, 274-280.                                                                       | 1.1  | 185       |
| 113 | Adhesion and nonwetting-wetting transition in the Al/Î $\pm$ â $^{3}$ Al2O3interface. Physical Review B, 2004, 69, .                                                                             | 1.1  | 184       |
| 114 | Mechanism of Homogeneous Ir(III) Catalyzed Regioselective Arylation of Olefins. Journal of the<br>American Chemical Society, 2004, 126, 352-363.                                                 | 6.6  | 184       |
| 115 | Early maturation processes in coal. Part 2: Reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures. Organic Geochemistry, 2009, 40, 1195-1209.     | 0.9  | 183       |
| 116 | Antiferromagnetic band structure ofLa2CuO4: Becke-3–Lee-Yang-Parr calculations. Physical Review B,<br>2001, 63, .                                                                                | 1.1  | 182       |
| 117 | Development of a ReaxFF Reactive Force Field for Glycine and Application to Solvent Effect and Tautomerization. Journal of Physical Chemistry B, 2011, 115, 249-261.                             | 1.2  | 182       |
| 118 | Definitive Band Gaps for Single-Wall Carbon Nanotubes. Journal of Physical Chemistry Letters, 2010, 1,<br>2946-2950.                                                                             | 2.1  | 179       |
| 119 | Outstanding hydrogen evolution reaction catalyzed by porous nickel diselenide electrocatalysts.<br>Energy and Environmental Science, 2017, 10, 1487-1492.                                        | 15.6 | 176       |
| 120 | Bonding Properties of the Water Dimer:Â A Comparative Study of Density Functional Theories. Journal of Physical Chemistry A, 2004, 108, 2305-2313.                                               | 1.1  | 174       |
| 121 | Alkylgold complexes by the intramolecular aminoauration of unactivated alkenes. Chemical Science, 2010, 1, 226.                                                                                  | 3.7  | 174       |
| 122 | Morse Stretch Potential Charge Equilibrium Force Field for Ceramics: Application to the<br>Quartz-Stishovite Phase Transition and to Silica Glass. Physical Review Letters, 1999, 82, 1708-1711. | 2.9  | 173       |
| 123 | The Reaction Mechanism with Free Energy Barriers for Electrochemical Dihydrogen Evolution on MoS <sub>2</sub> . Journal of the American Chemical Society, 2015, 137, 6692-6698.                  | 6.6  | 173       |
| 124 | Effects of Surface Roughness on the Electrochemical Reduction of CO <sub>2</sub> over Cu. ACS Energy Letters, 2020, 5, 1206-1214.                                                                | 8.8  | 172       |
| 125 | Highly stable tetrathiafulvalene radical dimers in [3]catenanes. Nature Chemistry, 2010, 2, 870-879.                                                                                             | 6.6  | 171       |
| 126 | Metalâ^'Organic Frameworks Provide Large Negative Thermal Expansion Behavior. Journal of Physical<br>Chemistry C, 2007, 111, 15185-15191.                                                        | 1.5  | 170       |

| #   | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Electrochemical CO Reduction Builds Solvent Water into Oxygenate Products. Journal of the<br>American Chemical Society, 2018, 140, 9337-9340.                                                                                                 | 6.6 | 170       |
| 128 | The charge-asymmetric nonlocally determined local-electric (CANDLE) solvation model. Journal of Chemical Physics, 2015, 142, 064107.                                                                                                          | 1.2 | 167       |
| 129 | Stabilization of Coiled-Coil Peptide Domains by Introduction of Trifluoroleucineâ€. Biochemistry, 2001, 40, 2790-2796.                                                                                                                        | 1.2 | 166       |
| 130 | BrÃ,nsted basicity of the air–water interface. Proceedings of the National Academy of Sciences of the<br>United States of America, 2012, 109, 18679-18683.                                                                                    | 3.3 | 159       |
| 131 | A Radically Configurable Six-State Compound. Science, 2013, 339, 429-433.                                                                                                                                                                     | 6.0 | 158       |
| 132 | The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3815-3820. | 3.3 | 157       |
| 133 | Pressureâ€Dependent Polymorphism and Bandâ€Gap Tuning of Methylammonium Lead Iodide Perovskite.<br>Angewandte Chemie - International Edition, 2016, 55, 6540-6544.                                                                            | 7.2 | 157       |
| 134 | Development and Validation of a ReaxFF Reactive Force Field for Cu Cation/Water Interactions and<br>Copper Metal/Metal Oxide/Metal Hydroxide Condensed Phases. Journal of Physical Chemistry A, 2010,<br>114, 9507-9514.                      | 1.1 | 156       |
| 135 | Mechanical properties and force field parameters for polyethylene crystal. The Journal of Physical Chemistry, 1991, 95, 2260-2272.                                                                                                            | 2.9 | 154       |
| 136 | On the Impact of Steric and Electronic Properties of Ligands on Gold(I)-Catalyzed Cycloaddition Reactions. Organic Letters, 2009, 11, 4798-4801.                                                                                              | 2.4 | 153       |
| 137 | The extended Perdew-Burke-Ernzerhof functional with improved accuracy for thermodynamic and electronic properties of molecular systems. Journal of Chemical Physics, 2004, 121, 4068-4082.                                                    | 1.2 | 150       |
| 138 | Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane. Nature Communications, 2019, 10, 3340.                                                                     | 5.8 | 150       |
| 139 | Atomistic-Scale Simulations of the Initial Chemical Events in the Thermal Initiation of Triacetonetriperoxide. Journal of the American Chemical Society, 2005, 127, 11053-11062.                                                              | 6.6 | 147       |
| 140 | Application of the ReaxFF Reactive Force Field to Reactive Dynamics of Hydrocarbon Chemisorption and Decomposition. Journal of Physical Chemistry C, 2010, 114, 5675-5685.                                                                    | 1.5 | 147       |
| 141 | Mechanistic Analysis of Hydroarylation Catalysts. Journal of the American Chemical Society, 2004, 126, 11658-11665.                                                                                                                           | 6.6 | 146       |
| 142 | Alkyl polyglycoside surfactant–alcohol cosolvent formulations for improved oil recovery. Colloids<br>and Surfaces A: Physicochemical and Engineering Aspects, 2009, 339, 48-59.                                                               | 2.3 | 146       |
| 143 | Nature of the Active Sites for CO Reduction on Copper Nanoparticles; Suggestions for Optimizing Performance. Journal of the American Chemical Society, 2017, 139, 11642-11645.                                                                | 6.6 | 146       |
| 144 | Thermodynamics of liquids: standard molar entropies and heat capacities of common solvents from 2PT molecular dynamics. Physical Chemistry Chemical Physics, 2011, 13, 169-181.                                                               | 1.3 | 144       |

| #   | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | A fast doubly hybrid density functional method close to chemical accuracy using a local opposite spin<br>ansatz. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108,<br>19896-19900.    | 3.3  | 143       |
| 146 | Mechanical and Transport Properties of the Poly(ethylene oxide)â^'Poly(acrylic acid) Double Network<br>Hydrogel from Molecular Dynamic Simulations. Journal of Physical Chemistry B, 2007, 111, 1729-1737.                      | 1.2  | 142       |
| 147 | Reaction mechanism and kinetics for CO2 reduction on nickel single atom catalysts from quantum mechanics. Nature Communications, 2020, 11, 2256.                                                                                | 5.8  | 140       |
| 148 | Flexible d basis sets for scandium through copper. The Journal of Physical Chemistry, 1981, 85, 2607-2611.                                                                                                                      | 2.9  | 139       |
| 149 | Development and Application of a ReaxFF Reactive Force Field for Oxidative Dehydrogenation on<br>Vanadium Oxide Catalysts. Journal of Physical Chemistry C, 2008, 112, 14645-14654.                                             | 1.5  | 138       |
| 150 | Water adsorption on stepped ZnO surfaces from MD simulation. Surface Science, 2010, 604, 741-752.                                                                                                                               | 0.8  | 138       |
| 151 | Ab InitioEffective Potentials for Use in Molecular Calculations. Journal of Chemical Physics, 1972, 56, 2685-2701.                                                                                                              | 1.2  | 134       |
| 152 | Accurate Energies and Structures for Large Water Clusters Using the X3LYP Hybrid Density Functional. Journal of Physical Chemistry A, 2004, 108, 10518-10526.                                                                   | 1.1  | 134       |
| 153 | A Highly Active Star Decahedron Cu Nanocatalyst for Hydrocarbon Production at Low<br>Overpotentials. Advanced Materials, 2019, 31, e1805405.                                                                                    | 11.1 | 134       |
| 154 | Electrocatalysis at Organic–Metal Interfaces: Identification of Structure–Reactivity Relationships<br>for CO <sub>2</sub> Reduction at Modified Cu Surfaces. Journal of the American Chemical Society,<br>2019, 141, 7355-7364. | 6.6  | 133       |
| 155 | Dynamics and Thermodynamics of Water in PAMAM Dendrimers at Subnanosecond Time Scales. Journal of Physical Chemistry B, 2005, 109, 8663-8672.                                                                                   | 1.2  | 131       |
| 156 | pKa Calculations of Aliphatic Amines, Diamines, and Aminoamides via Density Functional Theory with a<br>Poissonâ^'Boltzmann Continuum Solvent Model. Journal of Physical Chemistry A, 2007, 111, 4422-4430.                     | 1.1  | 131       |
| 157 | New pseudospectral algorithms for electronic structure calculations: Length scale separation and analytical twoâ€electron integral corrections. Journal of Chemical Physics, 1994, 101, 4028-4041.                              | 1.2  | 129       |
| 158 | Dynamic Transition in the Structure of an Energetic Crystal during Chemical Reactions at Shock<br>Front Prior to Detonation. Physical Review Letters, 2007, 99, 148303.                                                         | 2.9  | 129       |
| 159 | The Inner-Sphere Process in the Enantioselective Tsuji Allylation Reaction with<br>( <i>S</i> )- <i>t</i> -Bu-phosphinooxazoline Ligands. Journal of the American Chemical Society, 2007, 129,<br>11876-11877.                  | 6.6  | 129       |
| 160 | Density-Dependent Liquid Nitromethane Decomposition: Molecular Dynamics Simulations Based on<br>ReaxFF. Journal of Physical Chemistry A, 2011, 115, 10181-10202.                                                                | 1.1  | 129       |
| 161 | Decomposition of Condensed Phase Energetic Materials: Interplay between Uni- and Bimolecular<br>Mechanisms. Journal of the American Chemical Society, 2014, 136, 4192-4200.                                                     | 6.6  | 126       |
| 162 | Reaction Mechanism and Kinetics for Ammonia Synthesis on the Fe(111) Surface. Journal of the American Chemical Society, 2018, 140, 6288-6297.                                                                                   | 6.6  | 126       |

| #   | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Modified Generalized Valence-Bond Method: A Simple Correction for the Electron Correlation<br>Missing in Generalized Valence-Bond Wave Functions; Prediction of Double-Well States<br>forCr2andMo2. Physical Review Letters, 1985, 54, 661-664. | 2.9 | 124       |
| 164 | Product Protection, the Key to Developing High Performance Methane Selective Oxidation Catalysts.<br>Journal of the American Chemical Society, 2009, 131, 17110-17115.                                                                          | 6.6 | 124       |
| 165 | <i>Ab initio</i> phonon coupling and optical response of hot electrons in plasmonic metals. Physical<br>Review B, 2016, 94, .                                                                                                                   | 1.1 | 124       |
| 166 | Atomistic Description of Ionic Diffusion in PEO–LiTFSI: Effect of Temperature, Molecular Weight, and<br>Ionic Concentration. Macromolecules, 2018, 51, 8987-8995.                                                                               | 2.2 | 124       |
| 167 | Solution-Phase Mechanistic Study and Solid-State Structure of a Tris(bipyridinium radical cation)<br>Inclusion Complex. Journal of the American Chemical Society, 2012, 134, 3061-3072.                                                         | 6.6 | 123       |
| 168 | Predicted 3D structure for the human Â2 adrenergic receptor and its binding site for agonists and<br>antagonists. Proceedings of the National Academy of Sciences of the United States of America, 2004,<br>101, 2736-2741.                     | 3.3 | 122       |
| 169 | Stability and Thermodynamics of the PtCl2Type Catalyst for Activating Methane to Methanol:Â A<br>Computational Study. Organometallics, 2002, 21, 511-525.                                                                                       | 1.1 | 121       |
| 170 | Threshold Crack Speed Controls Dynamical Fracture of Silicon Single Crystals. Physical Review<br>Letters, 2007, 99, 165502.                                                                                                                     | 2.9 | 121       |
| 171 | Energetics of Third-Row Transition Metal Methylidene Ions MCH2+ (M = La, Hf, Ta, W, Re, Os, Ir, Pt, Au).<br>Journal of the American Chemical Society, 1994, 116, 8733-8740.                                                                     | 6.6 | 119       |
| 172 | The ferroelectric and cubic phases in BaTiO3 ferroelectrics are also antiferroelectric. Proceedings of the United States of America, 2006, 103, 14695-14700.                                                                                    | 3.3 | 119       |
| 173 | Calculation of Mechanical, Thermodynamic and Transport Properties of Metallic Glass Formers.<br>Materials Research Society Symposia Proceedings, 1998, 554, 43.                                                                                 | 0.1 | 117       |
| 174 | Position of K Atoms in Doped Single-Walled Carbon Nanotube Crystals. Physical Review Letters, 1998,<br>80, 5556-5559.                                                                                                                           | 2.9 | 117       |
| 175 | A Two-Stage Mechanism of Bimetallic Catalyzed Growth of Single-Walled Carbon Nanotubes. Nano<br>Letters, 2004, 4, 2331-2335.                                                                                                                    | 4.5 | 116       |
| 176 | Dynamics of the Dissociation of Hydrogen on Stepped Platinum Surfaces Using the ReaxFF Reactive Force Field. Journal of Physical Chemistry B, 2006, 110, 4274-4282.                                                                             | 1.2 | 116       |
| 177 | Experimental and <i>AbÂlnitio</i> Ultrafast Carrier Dynamics in Plasmonic Nanoparticles. Physical<br>Review Letters, 2017, 118, 087401.                                                                                                         | 2.9 | 116       |
| 178 | Reaction Mechanism for the Hydrogen Evolution Reaction on the Basal Plane Sulfur Vacancy Site of<br>MoS <sub>2</sub> Using Grand Canonical Potential Kinetics. Journal of the American Chemical<br>Society, 2018, 140, 16773-16782.             | 6.6 | 116       |
| 179 | Fractal atomic-level percolation in metallic glasses. Science, 2015, 349, 1306-1310.                                                                                                                                                            | 6.0 | 114       |
| 180 | Relative Unidirectional Translation in an Artificial Molecular Assembly Fueled by Light. Journal of the<br>American Chemical Society, 2013, 135, 18609-18620.                                                                                   | 6.6 | 112       |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Quantum-mechanical calculations of the stabilities of fluxional isomers of C4HFormula in solution.<br>Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15-19.             | 3.3 | 111       |
| 182 | M3B:  A Coarse Grain Force Field for Molecular Simulations of Malto-Oligosaccharides and Their<br>Water Mixtures. Journal of Physical Chemistry B, 2004, 108, 1414-1427.                                             | 1.2 | 111       |
| 183 | A Push-Button Molecular Switch. Journal of the American Chemical Society, 2009, 131, 11571-11580.                                                                                                                    | 6.6 | 111       |
| 184 | Substrate assistance in the mechanism of family 18 chitinases: theoretical studies of potential intermediates and inhibitors 1 1Edited by B. Honig. Journal of Molecular Biology, 1998, 280, 913-923.                | 2.0 | 110       |
| 185 | Computational Study of Copper(II) Complexation and Hydrolysis in Aqueous Solutions Using Mixed<br>Cluster/Continuum Models. Journal of Physical Chemistry A, 2009, 113, 9559-9567.                                   | 1.1 | 110       |
| 186 | Oxygen Hydration Mechanism for the Oxygen Reduction Reaction at Pt and Pd Fuel Cell Catalysts.<br>Journal of Physical Chemistry Letters, 2011, 2, 572-576.                                                           | 2.1 | 110       |
| 187 | Atomistic Origin of Brittle Failure of Boron Carbide from Large-Scale Reactive Dynamics Simulations:<br>Suggestions toward Improved Ductility. Physical Review Letters, 2015, 115, 105501.                           | 2.9 | 109       |
| 188 | The Source of Helicity in PerfluorinatedN-Alkanes. Macromolecules, 2003, 36, 5331-5341.                                                                                                                              | 2.2 | 108       |
| 189 | Water Formation on Pt and Pt-based Alloys: A Theoretical Description of a Catalytic Reaction.<br>ChemPhysChem, 2006, 7, 992-1005.                                                                                    | 1.0 | 107       |
| 190 | Simulating the Initial Stage of Phenolic Resin Carbonization via the ReaxFF Reactive Force Field.<br>Journal of Physical Chemistry A, 2009, 113, 6891-6894.                                                          | 1.1 | 107       |
| 191 | General Multiobjective Force Field Optimization Framework, with Application to Reactive Force Fields for Silicon Carbide. Journal of Chemical Theory and Computation, 2014, 10, 1426-1439.                           | 2.3 | 107       |
| 192 | Identifying Active Sites for CO <sub>2</sub> Reduction on Dealloyed Gold Surfaces by Combining<br>Machine Learning with Multiscale Simulations. Journal of the American Chemical Society, 2019, 141,<br>11651-11657. | 6.6 | 107       |
| 193 | First Principles Calculations of the Tautomers and pKaValues of 8-Oxoguanine:Â Implications for<br>Mutagenicity and Repair. Chemical Research in Toxicology, 2002, 15, 1023-1035.                                    | 1.7 | 106       |
| 194 | Nature of the excited states ofHe2. Physical Review A, 1975, 12, 1203-1221.                                                                                                                                          | 1.0 | 105       |
| 195 | New Concepts of Metallic Bonding Based on Valence-Bond Ideas. Physical Review Letters, 1985, 55, 2563-2566.                                                                                                          | 2.9 | 105       |
| 196 | Thermal Decomposition of Condensed-Phase Nitromethane from Molecular Dynamics from ReaxFF<br>Reactive Dynamics. Journal of Physical Chemistry B, 2011, 115, 6534-6540.                                               | 1.2 | 105       |
| 197 | Selective Extraction of C <sub>70</sub> by a Tetragonal Prismatic Porphyrin Cage. Journal of the<br>American Chemical Society, 2018, 140, 13835-13842.                                                               | 6.6 | 105       |
| 198 | Selective CO <sub>2</sub> Electrochemical Reduction Enabled by a Tricomponent Copolymer Modifier on a Copper Surface. Journal of the American Chemical Society, 2021, 143, 2857-2865.                                | 6.6 | 104       |

| #   | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Thermal Decomposition of Hydrazines from Reactive Dynamics Using the ReaxFF Reactive Force Field.<br>Journal of Physical Chemistry B, 2009, 113, 10770-10778.                                                                                                   | 1.2 | 103       |
| 200 | Mechanism and Kinetics for the Initial Steps of Pyrolysis and Combustion of<br>1,6-Dicyclopropane-2,4-hexyne from ReaxFF Reactive Dynamics. Journal of Physical Chemistry A, 2011, 115,<br>4941-4950.                                                           | 1.1 | 103       |
| 201 | The Reaction Mechanism of the Enantioselective Tsuji Allylation: Inner-Sphere and Outer-Sphere<br>Pathways, Internal Rearrangements, and Asymmetric C–C Bond Formation. Journal of the American<br>Chemical Society, 2012, 134, 19050-19060.                    | 6.6 | 103       |
| 202 | Improved Quantum Theory of Manyâ€Electron Systems. III. The GF Method. Journal of Chemical Physics,<br>1968, 48, 450-461.                                                                                                                                       | 1.2 | 102       |
| 203 | Electrophilic, Ambiphilic, and Nucleophilic Câ^'H Bond Activation: Understanding the Electronic<br>Continuum of Câ^'H Bond Activation Through Transition-State and Reaction Pathway Interaction<br>Energy Decompositions. Organometallics, 2010, 29, 6459-6472. | 1.1 | 102       |
| 204 | Tellurium: Fast Electrical and Atomic Transport along the Weak Interaction Direction. Journal of the American Chemical Society, 2018, 140, 550-553.                                                                                                             | 6.6 | 101       |
| 205 | Thermal decomposition process in algaenan of Botryococcus braunii race L. Part 2: Molecular<br>dynamics simulations using the ReaxFF reactive force field. Organic Geochemistry, 2009, 40, 416-427.                                                             | 0.9 | 100       |
| 206 | Chemisorption of Organics on Platinum. 2. Chemisorption of C2Hxand CHxon Pt(111). Journal of Physical Chemistry B, 1998, 102, 9492-9500.                                                                                                                        | 1.2 | 98        |
| 207 | The Isomerization Equilibrium between Cis and Trans Chloride Ruthenium Olefin Metathesis Catalysts from Quantum Mechanics Calculations. Journal of the American Chemical Society, 2005, 127, 12218-12219.                                                       | 6.6 | 98        |
| 208 | Development of the ReaxFF reactive force field for mechanistic studies of catalytic selective oxidation processes on BiMoO x. Topics in Catalysis, 2006, 38, 93.                                                                                                | 1.3 | 98        |
| 209 | Elucidating glycosaminoglycan–protein–protein interactions using carbohydrate microarray and computational approaches. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9747-9752.                                   | 3.3 | 98        |
| 210 | Csp <sup>3</sup> –Csp <sup>3</sup> Bond-Forming Reductive Elimination from Well-Defined Copper(III)<br>Complexes. Journal of the American Chemical Society, 2019, 141, 3153-3159.                                                                               | 6.6 | 98        |
| 211 | Distance Dependent Hydrogen Bond Potentials for Nucleic Acid Base Pairs from ab Initio Quantum<br>Mechanical Calculations (LMP2/cc-pVTZ). Journal of Physical Chemistry B, 1997, 101, 4851-4859.                                                                | 1.2 | 97        |
| 212 | Pd-Mediated Activation of Molecular Oxygen in a Nonpolar Medium. Journal of the American Chemical Society, 2005, 127, 13172-13179.                                                                                                                              | 6.6 | 97        |
| 213 | Physical mechanism of anisotropic sensitivity in pentaerythritol tetranitrate from compressive-shear reaction dynamics simulations. Applied Physics Letters, 2010, 96, .                                                                                        | 1.5 | 97        |
| 214 | Protein Dynamics in a Family of Laboratory Evolved Thermophilic Enzymes. Journal of Molecular<br>Biology, 2003, 327, 745-757.                                                                                                                                   | 2.0 | 96        |
| 215 | First Principles Predictions of the Structure and Function of G-Protein-Coupled Receptors: Validation for Bovine Rhodopsin. Biophysical Journal, 2004, 86, 1904-1921.                                                                                           | 0.2 | 96        |
| 216 | Hydration of Copper(II): New Insights from Density Functional Theory and the COSMO Solvation<br>Model. Journal of Physical Chemistry A, 2008, 112, 9104-9112.                                                                                                   | 1.1 | 96        |

| #   | Article                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Correlation onsistent configuration interaction: Accurate bond dissociation energies from simple<br>wave functions. Journal of Chemical Physics, 1988, 88, 3132-3140.                                                                                                             | 1.2 | 95        |
| 218 | ReaxFF Reactive Force Field for the Y-Doped BaZrO <sub>3</sub> Proton Conductor with Applications to Diffusion Rates for Multigranular Systems. Journal of Physical Chemistry A, 2008, 112, 11414-11422.                                                                          | 1.1 | 95        |
| 219 | A Covalent Organic Framework that Exceeds the DOE 2015 Volumetric Target for H <sub>2</sub><br>Uptake at 298 K. Journal of Physical Chemistry Letters, 2012, 3, 2671-2675.                                                                                                        | 2.1 | 95        |
| 220 | The gas phase reaction of singlet dioxygen with water: A water-catalyzed mechanism. Proceedings of the United States of America, 2002, 99, 3376-3381.                                                                                                                             | 3.3 | 94        |
| 221 | A divide-and-conquer/cellular-decomposition framework for million-to-billion atom simulations of chemical reactions. Computational Materials Science, 2007, 38, 642-652.                                                                                                          | 1.4 | 94        |
| 222 | Dynamics of Bengal Rose Encapsulated in the Meijer Dendrimer Box. Journal of the American Chemical<br>Society, 1997, 119, 7458-7462.                                                                                                                                              | 6.6 | 93        |
| 223 | Critical behavior in spallation failure of metals. Physical Review B, 2001, 63, .                                                                                                                                                                                                 | 1.1 | 92        |
| 224 | Optimization and Application of Lithium Parameters for the Reactive Force Field, ReaxFF. Journal of Physical Chemistry A, 2005, 109, 4575-4582.                                                                                                                                   | 1.1 | 92        |
| 225 | Interactions of Poly(amidoamine) Dendrimers with Human Serum Albumin: Binding Constants and Mechanisms. ACS Nano, 2011, 5, 3456-3468.                                                                                                                                             | 7.3 | 92        |
| 226 | Design of Covalent Organic Frameworks for Methane Storage. Journal of Physical Chemistry A, 2011,<br>115, 13852-13857.                                                                                                                                                            | 1.1 | 92        |
| 227 | Ex2Box: Interdependent Modes of Binding in a Two-Nanometer-Long Synthetic Receptor. Journal of the<br>American Chemical Society, 2013, 135, 12736-12746.                                                                                                                          | 6.6 | 92        |
| 228 | Electronic Structure of IrO <sub>2</sub> : The Role of the Metal d Orbitals. Journal of Physical<br>Chemistry C, 2015, 119, 11570-11577.                                                                                                                                          | 1.5 | 91        |
| 229 | Effectively Increased Efficiency for Electroreduction of Carbon Monoxide Using Supported Polycrystalline Copper Powder Electrocatalysts. ACS Catalysis, 2019, 9, 4709-4718.                                                                                                       | 5.5 | 91        |
| 230 | New Foundation for the Use of Pseudopotentials in Metals. Physical Review, 1968, 174, 659-662.                                                                                                                                                                                    | 2.7 | 90        |
| 231 | Protein simulations using techniques suitable for very large systems: The cell multipole method for nonbond interactions and the Newton-Euler inverse mass operator method for internal coordinate dynamics. Proteins: Structure, Function and Bioinformatics, 1994, 20, 227-247. | 1.5 | 88        |
| 232 | Predictions of CCR1 Chemokine Receptor Structure and BX 471 Antagonist Binding Followed by Experimental Validation. Journal of Biological Chemistry, 2006, 281, 27613-27620.                                                                                                      | 1.6 | 88        |
| 233 | ReaxFF Reactive Force Field for Solid Oxide Fuel Cell Systems with Application to Oxygen Ion<br>Transport in Yttria-Stabilized Zirconia. Journal of Physical Chemistry A, 2008, 112, 3133-3140.                                                                                   | 1.1 | 88        |
| 234 | Thermochemistry for Hydrocarbon Intermediates Chemisorbed on Metal Surfaces: CHn-m(CH3)m with<br>n = 1, 2, 3 and m ≤n on Pt, Ir, Os, Pd, Rh, and Ru. Journal of the American Chemical Society, 2000, 122,<br>2309-2321.                                                           | 6.6 | 87        |

| #   | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Solvent Quality Changes the Structure of G8 PAMAM Dendrimer, a Disagreement with Some<br>Experimental Interpretations. Journal of Physical Chemistry B, 2006, 110, 25628-25632.                                               | 1.2 | 87        |
| 236 | Discrete Dimers of Redox-Active and Fluorescent Perylene Diimide-Based Rigid Isosceles Triangles in the Solid State. Journal of the American Chemical Society, 2019, 141, 1290-1303.                                          | 6.6 | 87        |
| 237 | Elucidation of the dynamics for hot-spot initiation at nonuniform interfaces of highly shocked materials. Physical Review B, 2011, 84, .                                                                                      | 1.1 | 85        |
| 238 | The role of kinetic energy in chemical binding. Theoretica Chimica Acta, 1972, 26, 195-210.                                                                                                                                   | 0.9 | 84        |
| 239 | Computational Insights on the Challenges for Polymerizing Polar Monomers. Journal of the American<br>Chemical Society, 2002, 124, 10198-10210.                                                                                | 6.6 | 84        |
| 240 | DFT Prediction of Oxygen Reduction Reaction on Palladium–Copper Alloy Surfaces. ACS Catalysis, 2014, 4, 1189-1197.                                                                                                            | 5.5 | 84        |
| 241 | Highly Shocked Polymer Bonded Explosives at a Nonplanar Interface: Hot-Spot Formation Leading to Detonation. Journal of Physical Chemistry C, 2013, 117, 26551-26561.                                                         | 1.5 | 83        |
| 242 | Criteria for formation of metallic glasses: The role of atomic size ratio. Journal of Chemical Physics, 2003, 119, 9858-9870.                                                                                                 | 1.2 | 81        |
| 243 | Making Sense of Olfaction through Predictions of the 3-D Structure and Function of Olfactory Receptors. Chemical Senses, 2004, 29, 269-290.                                                                                   | 1.1 | 81        |
| 244 | Mechanism of Direct Molecular Oxygen Insertion in a Palladium(II)â^'Hydride Bond. Inorganic<br>Chemistry, 2006, 45, 9631-9633.                                                                                                | 1.9 | 81        |
| 245 | Molecular dynamics for very large systems on massively parallel computers: The MPSim program.<br>Journal of Computational Chemistry, 1997, 18, 501-521.                                                                       | 1.5 | 80        |
| 246 | First Principles Calculations of the pKa Values and Tautomers of Isoguanine and Xanthine. Chemical<br>Research in Toxicology, 2003, 16, 1455-1462.                                                                            | 1.7 | 80        |
| 247 | Molecular Dynamics Simulations of the Interactions between Platinum Clusters and Carbon Platelets.<br>Journal of Physical Chemistry A, 2008, 112, 1392-1402.                                                                  | 1.1 | 80        |
| 248 | Theoretical Description of the STM Images of Alkanes and Substituted Alkanes Adsorbed on Graphite.<br>Journal of Physical Chemistry B, 1997, 101, 5996-6020.                                                                  | 1.2 | 79        |
| 249 | Viscosities of liquid metal alloys from nonequilibrium molecular dynamics. Journal of<br>Computer-Aided Materials Design, 2001, 8, 233-243.                                                                                   | 0.7 | 79        |
| 250 | Hydroxylation Structure and Proton Transfer Reactivity at the Zinc Oxideâ^'Water Interface. Journal of Physical Chemistry C, 2011, 115, 8573-8579.                                                                            | 1.5 | 79        |
| 251 | Development of a ReaxFF Reactive Force Field for Ettringite and Study of its Mechanical Failure Modes from Reactive Dynamics Simulations. Journal of Physical Chemistry A, 2012, 116, 3918-3925.                              | 1.1 | 79        |
| 252 | Ab Initio Quantum Mechanical Study of the Structures and Energies for the Pseudorotation of<br>5â€~Dehydroxy Analogues of 2â€~Deoxyribose and Ribose Sugars. Journal of the American Chemical<br>Society, 1999, 121, 985-993. | 6.6 | 78        |

| #   | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Mechanism of the Aerobic Oxidation of Alcohols by Palladium Complexes of N-Heterocyclic Carbenes.<br>Journal of the American Chemical Society, 2006, 128, 9651-9660.                                                                                             | 6.6 | 77        |
| 254 | Development of Interatomic ReaxFF Potentials for Au–S–C–H Systems. Journal of Physical Chemistry A, 2011, 115, 10315-10322.                                                                                                                                      | 1.1 | 77        |
| 255 | Anisotropic shock sensitivity for <i>β</i> -octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine energetic<br>material under compressive-shear loading from ReaxFF-lg reactive dynamics simulations. Journal of<br>Applied Physics, 2012, 111, .                     | 1.1 | 77        |
| 256 | Structure, Bonding, and Stability of a Catalytica Platinum(II) Catalyst:Â A Computational Study.<br>Organometallics, 2003, 22, 2057-2068.                                                                                                                        | 1,1 | 74        |
| 257 | HierVLS Hierarchical Docking Protocol for Virtual Ligand Screening of Large-Molecule Databases.<br>Journal of Medicinal Chemistry, 2004, 47, 56-71.                                                                                                              | 2.9 | 74        |
| 258 | Single-Site Vanadyl Activation, Functionalization, and Reoxidation Reaction Mechanism for Propane<br>Oxidative Dehydrogenation on the Cubic V4O10Cluster. Journal of Physical Chemistry C, 2007, 111,<br>5115-5127.                                              | 1.5 | 74        |
| 259 | Mechanism and Energetics for Complexation of90Y with<br>1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic Acid (DOTA), a Model for Cancer<br>Radioimmunotherapy. Journal of the American Chemical Society, 1999, 121, 6142-6151.                               | 6.6 | 73        |
| 260 | Synthesis, Structure, and Reactivity of O-Donor Ir(III) Complexes:Â Câ^'H Activation Studies with Benzene.<br>Journal of the American Chemical Society, 2005, 127, 11372-11389.                                                                                  | 6.6 | 73        |
| 261 | Dendritic Chelating Agents. 2. U(VI) Binding to Poly(amidoamine) and Poly(propyleneimine) Dendrimers<br>in Aqueous Solutions. Environmental Science & Technology, 2008, 42, 1572-1579.                                                                           | 4.6 | 73        |
| 262 | Identification of the Selective Sites for Electrochemical Reduction of CO to C <sub>2+</sub><br>Products on Copper Nanoparticles by Combining Reactive Force Fields, Density Functional Theory, and<br>Machine Learning. ACS Energy Letters, 2018, 3, 2983-2988. | 8.8 | 73        |
| 263 | Ab initioeffective potentials for silicon. Physical Review B, 1977, 15, 5038-5048.                                                                                                                                                                               | 1.1 | 72        |
| 264 | Agostic Interactions and Dissociation in the First Layer of Water on Pt(111). Journal of the American Chemical Society, 2004, 126, 9360-9368.                                                                                                                    | 6.6 | 72        |
| 265 | High H <sub>2</sub> Uptake in Li-, Na-, K-Metalated Covalent Organic Frameworks and Metal Organic<br>Frameworks at 298 K. Journal of Physical Chemistry A, 2012, 116, 1621-1631.                                                                                 | 1.1 | 72        |
| 266 | Structure-Based Sequence Alignment of the Transmembrane Domains of All Human GPCRs:<br>Phylogenetic, Structural and Functional Implications. PLoS Computational Biology, 2016, 12, e1004805.                                                                     | 1.5 | 72        |
| 267 | Ab Initio Calculations on the H2+D2=2HD Fourâ€Center Exchange Reaction. I. Elements of the Reaction<br>Surface. Journal of Chemical Physics, 1969, 51, 716-731.                                                                                                  | 1.2 | 71        |
| 268 | Carboxylic Solvents and O-Donor Ligand Effects on CH Activation by Pt(II). Journal of the American<br>Chemical Society, 2006, 128, 7404-7405.                                                                                                                    | 6.6 | 71        |
| 269 | High H2 Storage of Hexagonal Metalâ``Organic Frameworks from First-Principles-Based Grand<br>Canonical Monte Carlo Simulations. Journal of Physical Chemistry C, 2008, 112, 13431-13436.                                                                         | 1.5 | 71        |
| 270 | Tailoring a Three-Phase Microenvironment for High-Performance Oxygen Reduction Reaction in<br>Proton Exchange Membrane Fuel Cells. Matter, 2020, 3, 1774-1790.                                                                                                   | 5.0 | 71        |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Constant Temperature Constrained Molecular Dynamics:  The Newtonâ^'Euler Inverse Mass Operator<br>Method. The Journal of Physical Chemistry, 1996, 100, 10508-10517.                                                              | 2.9 | 70        |
| 272 | Chemisorption of Organics on Platinum. 1. The Interstitial Electron Model. Journal of Physical Chemistry B, 1998, 102, 9481-9491.                                                                                                 | 1.2 | 70        |
| 273 | Mechanism for antibody catalysis of the oxidation of water by singlet dioxygen. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2636-2641.                                             | 3.3 | 70        |
| 274 | Adsorption of Atomic H and O on the (111) Surface of Pt3Ni Alloys. Journal of Physical Chemistry B, 2004, 108, 8311-8323.                                                                                                         | 1.2 | 70        |
| 275 | Toward Electrochemically Controllable Tristable Three-Station [2]Catenanes. Chemistry - an Asian<br>Journal, 2007, 2, 76-93.                                                                                                      | 1.7 | 70        |
| 276 | DFT Study of Oxygen Reduction Reaction on Os/Pt Core–Shell Catalysts Validated by Electrochemical<br>Experiment. ACS Catalysis, 2015, 5, 1568-1580.                                                                               | 5.5 | 70        |
| 277 | Reaction intermediates during operando electrocatalysis identified from full solvent quantum mechanics molecular dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7718-7722. | 3.3 | 70        |
| 278 | A detailed model for the decomposition of nitramines: RDX and HMX. Journal of Computer-Aided Materials Design, 2001, 8, 203-212.                                                                                                  | 0.7 | 69        |
| 279 | Chemisorption of (CHxand C2Hy) Hydrocarbons on Pt(111) Clusters and Surfaces from DFT Studies.<br>Journal of Physical Chemistry B, 2005, 109, 297-311.                                                                            | 1.2 | 69        |
| 280 | Anisotropic Shock Sensitivity of Cyclotrimethylene Trinitramine (RDX) from Compress-and-Shear<br>Reactive Dynamics. Journal of Physical Chemistry C, 2012, 116, 10198-10206.                                                      | 1.5 | 69        |
| 281 | <scp>G</scp> protein oupled odorant receptors: From sequence to structure. Protein Science, 2015, 24, 1543-1548.                                                                                                                  | 3.1 | 69        |
| 282 | In Silico Design of Highly Selective Mo-V-Te-Nb-O Mixed Metal Oxide Catalysts for Ammoxidation and<br>Oxidative Dehydrogenation of Propane and Ethane. Journal of the American Chemical Society, 2015, 137,<br>13224-13227.       | 6.6 | 68        |
| 283 | Core Polarization and Hyperfine Structure of the B, C, N, O, and F Atoms. Physical Review, 1969, 182, 48-64.                                                                                                                      | 2.7 | 67        |
| 284 | Fluorinated Imidazoles as Proton Carriers for Water-Free Fuel Cell Membranes. Journal of the<br>American Chemical Society, 2004, 126, 15644-15645.                                                                                | 6.6 | 67        |
| 285 | Conformation and Proton Configuration of Pyrimidine Deoxynucleoside Oxidation Damage Products in Water. Chemical Research in Toxicology, 2000, 13, 462-470.                                                                       | 1.7 | 66        |
| 286 | Mechanical properties of connected carbon nanorings via molecular dynamics simulation. Physical Review B, 2005, 72, .                                                                                                             | 1.1 | 65        |
| 287 | Modeling the human PTC bitter-taste receptor interactions with bitter tastants. Journal of Molecular<br>Modeling, 2006, 12, 931-941.                                                                                              | 0.8 | 65        |
| 288 | Compressive Shear Reactive Molecular Dynamics Studies Indicating That Cocrystals of TNT/CL-20<br>Decrease Sensitivity, Journal of Physical Chemistry C, 2014, 118, 30202-30208                                                    | 1.5 | 65        |

| #   | Article                                                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Folding of Oligoviologens Induced by Radical–Radical Interactions. Journal of the American Chemical<br>Society, 2015, 137, 876-885.                                                                                                                                                                                             | 6.6 | 65        |
| 290 | Wavefunctions and Correlation Energies for Twoâ€, Threeâ€, and Fourâ€Electron Atoms. Journal of<br>Chemical Physics, 1968, 48, 1008-1017.                                                                                                                                                                                       | 1.2 | 64        |
| 291 | How broadly tuned olfactory receptors equally recognize their agonists. Human OR1G1 as a test case.<br>Cellular and Molecular Life Sciences, 2012, 69, 4205-4213.                                                                                                                                                               | 2.4 | 64        |
| 292 | First-Principles-Based Reaction Kinetics for Decomposition of Hot, Dense Liquid TNT from ReaxFF<br>Multiscale Reactive Dynamics Simulations. Journal of Physical Chemistry C, 2013, 117, 21043-21054.                                                                                                                           | 1.5 | 64        |
| 293 | Au-activated N motifs in non-coherent cupric porphyrin metal organic frameworks for promoting and stabilizing ethylene production. Nature Communications, 2022, 13, 63.                                                                                                                                                         | 5.8 | 64        |
| 294 | Theoretical evidence for bound electronic excited states of ozone. Chemical Physics Letters, 1973, 23, 457-462.                                                                                                                                                                                                                 | 1.2 | 63        |
| 295 | Dramatic differences in carbon dioxide adsorption and initial steps of reduction between silver and copper. Nature Communications, 2019, 10, 1875.                                                                                                                                                                              | 5.8 | 63        |
| 296 | Nanophase Segregation and Water Dynamics in the Dendrion Diblock Copolymer Formed from the<br>Fréchet Polyaryl Ethereal Dendrimer and Linear PTFE. Journal of Physical Chemistry B, 2005, 109,<br>10154-10167.                                                                                                                  | 1.2 | 62        |
| 297 | Inaccessibility of β-Hydride Elimination from â^'OH Functional Groups in Wacker-Type Oxidation. Journal of the American Chemical Society, 2006, 128, 3132-3133.                                                                                                                                                                 | 6.6 | 62        |
| 298 | Atomic-Level Simulations of Seeman DNA Nanostructures: The Paranemic Crossover in Salt Solution.<br>Biophysical Journal, 2006, 90, 1463-1479.                                                                                                                                                                                   | 0.2 | 61        |
| 299 | Dearomatization Reactions of N-Heterocycles Mediated by Group 3 Complexes. Journal of the American<br>Chemical Society, 2010, 132, 342-355.                                                                                                                                                                                     | 6.6 | 61        |
| 300 | Unraveling Structural Models of Graphite Fluorides by Density Functional Theory Calculations.<br>Chemistry of Materials, 2010, 22, 2142-2154.                                                                                                                                                                                   | 3.2 | 60        |
| 301 | New Type of Wave Function for Li,Be+, andB++. Physical Review, 1968, 169, 120-130.                                                                                                                                                                                                                                              | 2.7 | 59        |
| 302 | The ReaxFF Monte Carlo Reactive Dynamics Method for Predicting Atomistic Structures of Disordered<br>Ceramics: Application to the Mo <sub>3</sub> VO <sub><i>x</i></sub> Catalyst. Angewandte Chemie -<br>International Edition, 2009, 48, 7630-7634.                                                                           | 7.2 | 59        |
| 303 | Cyclooctyne-based reagents for uncatalyzed click chemistry: A computational survey. Organic and<br>Biomolecular Chemistry, 2009, 7, 5255.                                                                                                                                                                                       | 1.5 | 58        |
| 304 | Predicted 3D structures for adenosine receptors bound to ligands: Comparison to the crystal structure. Journal of Structural Biology, 2010, 170, 10-20.                                                                                                                                                                         | 1.3 | 58        |
| 305 | Predicted Optimal Bifunctional Electrocatalysts for the Hydrogen Evolution Reaction and the Oxygen<br>Evolution Reaction Using Chalcogenide Heterostructures Based on Machine Learning Analysis of in<br>Silico Quantum Mechanics Based High Throughput Screening. Journal of Physical Chemistry Letters,<br>2020, 11, 869-876. | 2.1 | 58        |
| 306 | Molecular modelling of dendrimers for nanoscale applications. Nanotechnology, 2000, 11, 77-84.                                                                                                                                                                                                                                  | 1.3 | 57        |

| #   | Article                                                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 307 | Zeolitic Imidazolate Frameworks as H2 Adsorbents: Ab Initio Based Grand Canonical Monte Carlo<br>Simulation. Journal of Physical Chemistry C, 2010, 114, 12039-12047.                                                                                                                                | 1.5  | 57        |
| 308 | Experimental Sabatier plot for predictive design of active and stable Pt-alloy oxygen reduction reaction catalysts. Nature Catalysis, 2022, 5, 513-523.                                                                                                                                              | 16.1 | 57        |
| 309 | Nonlinear partial differential equations and applications: Peroxone chemistry: Formation of H2O3 and ring-(HO2)(HO3) from O3/H2O2. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15308-15312.                                                           | 3.3  | 56        |
| 310 | Structures, Mechanisms, and Kinetics of Selective Ammoxidation and Oxidation of Propane over<br>Multi-metal Oxide Catalysts. Topics in Catalysis, 2008, 50, 2-18.                                                                                                                                    | 1.3  | 56        |
| 311 | Experimentally-Based Recommendations of Density Functionals for Predicting Properties in<br>Mechanically Interlocked Molecules. Journal of the American Chemical Society, 2008, 130, 14928-14929.                                                                                                    | 6.6  | 56        |
| 312 | Friction anisotropy at Ni(100)/(100) interfaces: Molecular dynamics studies. Physical Review B, 2002, 66,                                                                                                                                                                                            | 1.1  | 55        |
| 313 | Development of a ReaxFF Reactive Force Field for Aqueous Chloride and Copper Chloride. Journal of<br>Physical Chemistry A, 2010, 114, 3556-3568.                                                                                                                                                     | 1.1  | 55        |
| 314 | Anions dramatically enhance proton transfer through aqueous interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10228-10232.                                                                                                                     | 3.3  | 55        |
| 315 | Redox Control of the Binding Modes of an Organic Receptor. Journal of the American Chemical<br>Society, 2015, 137, 11057-11068.                                                                                                                                                                      | 6.6  | 55        |
| 316 | Atomistic Explanation of the Dramatically Improved Oxygen Reduction Reaction of Jagged Platinum<br>Nanowires, 50 Times Better than Pt. Journal of the American Chemical Society, 2020, 142, 8625-8632.                                                                                               | 6.6  | 55        |
| 317 | The theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. I. The reactive force field ReaxFFHBN development. Journal of Chemical Physics, 2005, 123, 114703.                                                                                                      | 1.2  | 54        |
| 318 | Reactions of Group III Biheterocyclic Complexes. Journal of the American Chemical Society, 2009, 131, 10269-10278.                                                                                                                                                                                   | 6.6  | 54        |
| 319 | Structures, Energetics, and Reaction Barriers for CHx Bound to the Nickel (111) Surface. Journal of Physical Chemistry C, 2009, 113, 20290-20306.                                                                                                                                                    | 1.5  | 54        |
| 320 | Mechanism of O <sub>2</sub> Activation and Methanol Production by<br>(Di(2-pyridyl)methanesulfonate)Pt <sup>II</sup> Me(OH <sub><i>n</i></sub> ) <sup>(2–<i>n</i>)–</sup><br>Complex from Theory with Validation from Experiment. Journal of the American Chemical Society,<br>2014, 136, 2335-2341. | 6.6  | 54        |
| 321 | The orbital description of the potential energy curves and properties of the lower excited states of the BH molecule. Chemical Physics, 1974, 3, 297-316.                                                                                                                                            | 0.9  | 53        |
| 322 | Prediction of the 3D Structure and Dynamics of Human DP G-Protein Coupled Receptor Bound to an Agonist and an Antagonist. Journal of the American Chemical Society, 2007, 129, 10720-10731.                                                                                                          | 6.6  | 53        |
| 323 | Donor–Acceptor Oligorotaxanes Made to Order. Chemistry - A European Journal, 2011, 17, 2107-2119.                                                                                                                                                                                                    | 1.7  | 53        |
| 324 | Adaptive Accelerated ReaxFF Reactive Dynamics with Validation from Simulating Hydrogen<br>Combustion. Journal of the American Chemical Society, 2014, 136, 9434-9442.                                                                                                                                | 6.6  | 53        |

| #   | Article                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 325 | The atomistic origin of the extraordinary oxygen reduction activity of<br>Pt <sub>3</sub> Ni <sub>7</sub> fuel cell catalysts. Chemical Science, 2015, 6, 3915-3925.                                                                                                                            | 3.7 | 53        |
| 326 | Electronic Structure of LiH According to a Generalization of the Valenceâ€Bond Method. Journal of Chemical Physics, 1969, 50, 4524-4532.                                                                                                                                                        | 1.2 | 52        |
| 327 | Benzene Câ <sup>~^</sup> H Bond Activation in Carboxylic Acids Catalyzed by O-Donor Iridium(III) Complexes: An<br>Experimental and Density Functional Study. Organometallics, 2010, 29, 742-756.                                                                                                | 1.1 | 52        |
| 328 | Probing the C–O Bond-Formation Step in Metalloporphyrin-Catalyzed C–H Oxygenation Reactions. ACS<br>Catalysis, 2017, 7, 4182-4188.                                                                                                                                                              | 5.5 | 52        |
| 329 | The incorporation of quadratic convergence into open-shell self-consistent field equations.<br>Chemical Physics Letters, 1970, 6, 147-151.                                                                                                                                                      | 1.2 | 51        |
| 330 | Electron-phonon interactions and superconductivity inK3C60. Physical Review B, 1993, 48, 13959-13970.                                                                                                                                                                                           | 1.1 | 51        |
| 331 | Structures and Transport Properties of Hydrated Water-Soluble Dendrimer-Grafted Polymer<br>Membranes for Application to Polymer Electrolyte Membrane Fuel Cells:  Classical Molecular<br>Dynamics Approach. Journal of Physical Chemistry C, 2007, 111, 2759-2769.                              | 1.5 | 51        |
| 332 | Predicted structure of agonist-bound glucagon-like peptide 1 receptor, a class B G protein-coupled receptor. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19988-19993.                                                                           | 3.3 | 51        |
| 333 | Design of a Graphene Nitrene Two-Dimensional Catalyst Heterostructure Providing a Well-Defined<br>Site Accommodating One to Three Metals, with Application to CO <sub>2</sub> Reduction<br>Electrocatalysis for the Two-Metal Case. Journal of Physical Chemistry Letters, 2020, 11, 2541-2549. | 2.1 | 51        |
| 334 | Pd-Mediated Activation of Molecular Oxygen:Â Pd(0) versus Direct Insertion. Journal of the American<br>Chemical Society, 2007, 129, 10361-10369.                                                                                                                                                | 6.6 | 50        |
| 335 | Compressed Intermetallic PdCu for Enhanced Electrocatalysis. ACS Energy Letters, 2020, 5, 3672-3680.                                                                                                                                                                                            | 8.8 | 50        |
| 336 | Magnetic Hyperfine Structure of Lithium. Physical Review, 1967, 157, 93-96.                                                                                                                                                                                                                     | 2.7 | 49        |
| 337 | Heterolytic CH Activation with a Cyclometalated Platinum(II) 6-Phenyl-4,4â€ <sup>~</sup> -di-tert-butyl-2,2-Bipyridine<br>Complex. Organometallics, 2006, 25, 4734-4737.                                                                                                                        | 1.1 | 48        |
| 338 | Computational modeling of structure and OH-anion diffusion in quaternary ammonium polysulfone<br>hydroxide – Polymer electrolyte for application in electrochemical devices. Journal of Membrane<br>Science, 2013, 431, 79-85.                                                                  | 4.1 | 48        |
| 339 | Alkylation of Phenol:Â A Mechanistic View. Journal of Physical Chemistry A, 2006, 110, 2246-2252.                                                                                                                                                                                               | 1.1 | 47        |
| 340 | Methylrhenium Trioxide Revisited:  Mechanisms for Nonredox Oxygen Insertion in an Mâ^'CH3 Bond.<br>Journal of the American Chemical Society, 2007, 129, 15794-15804.                                                                                                                            | 6.6 | 47        |
| 341 | Predictions of melting, crystallization, and local atomic arrangements of aluminum clusters using a reactive force field. Journal of Chemical Physics, 2008, 129, 244506.                                                                                                                       | 1.2 | 47        |
| 342 | De Novo Ultrascale Atomistic Simulations On High-End Parallel Supercomputers. International<br>Journal of High Performance Computing Applications, 2008, 22, 113-128.                                                                                                                           | 2.4 | 47        |

| #   | Article                                                                                                                                                                                               | IF                 | CITATIONS       |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|
| 343 | DNA-Linker-Induced Surface Assembly of Ultra Dense Parallel Single Walled Carbon Nanotube Arrays.<br>Nano Letters, 2012, 12, 1129-1135.                                                               | 4.5                | 47              |
| 344 | Universal Correction of Density Functional Theory to Include London Dispersion (up to Lr, Element) Tj ETQq0 0                                                                                         | 0 rg <u>BT</u> /Ov | verlock 10 Tf 5 |
| 345 | Oligorotaxane Radicals under Orders. ACS Central Science, 2016, 2, 89-98.                                                                                                                             | 5.3                | 47              |
| 346 | The low-lying excited states of water, methanol, and dimethyl ether. Chemical Physics, 1976, 18, 1-11.                                                                                                | 0.9                | 46              |
| 347 | Dynamic friction force in a carbon peapod oscillator. Nanotechnology, 2006, 17, 5691-5695.                                                                                                            | 1.3                | 46              |
| 348 | Structure of polyamidoamide dendrimers up to limiting generations: A mesoscale description. Journal of Chemical Physics, 2009, 130, 144902.                                                           | 1.2                | 46              |
| 349 | Hydrophobic Segregation, Phase Transitions and the Anomalous Thermodynamics of Water/Methanol<br>Mixtures. Journal of Physical Chemistry B, 2012, 116, 13905-13912.                                   | 1.2                | 46              |
| 350 | Role of solvent-anion charge transfer in oxidative degradation of battery electrolytes. Nature Communications, 2019, 10, 3360.                                                                        | 5.8                | 46              |
| 351 | Improved Quantum Theory of Manyâ€Electron Systems. IV. Properties of GF Wavefunctions. Journal of Chemical Physics, 1968, 48, 5337-5347.                                                              | 1.2                | 45              |
| 352 | Charge density waves, spin density waves, and Peierls distortions in oneâ€dimensional metals. I.<br>Hartree–Fock studies of Cu, Ag, Au, Li, and Na. Journal of Chemical Physics, 1988, 88, 277-302.   | 1.2                | 45              |
| 353 | Band structures of II-VI semiconductors using Gaussian basis functions with separableab<br>initiopseudopotentials: Application to prediction of band offsets. Physical Review B, 1996, 53, 1377-1387. | 1.1                | 45              |
| 354 | A theoretical study of the conversion of gas phase methanediol to formaldehyde. Journal of Chemical Physics, 2003, 119, 5117-5120.                                                                    | 1.2                | 45              |
| 355 | Dendritic Anion Hosts:  Perchlorate Uptake by G5-NH <sub>2</sub> Poly(propyleneimine) Dendrimer in<br>Water and Model Electrolyte Solutions. Environmental Science & Technology, 2007, 41, 6521-6527. | 4.6                | 45              |
| 356 | Flat-Bottom Strategy for Improved Accuracy in Protein Side-Chain Placements. Journal of Chemical Theory and Computation, 2008, 4, 2160-2169.                                                          | 2.3                | 45              |
| 357 | Singlet–triplet energy gaps in fluorineâ€substituted methylenes and silylenes. Journal of Chemical<br>Physics, 1990, 93, 4986-4993.                                                                   | 1.2                | 44              |
| 358 | Effects of Molecular Geometry on the STM Image Contrast of Methyl- and Bromo-Substituted Alkanes and Alkanols on Graphite. Journal of Physical Chemistry B, 1999, 103, 9690-9699.                     | 1.2                | 44              |
| 359 | Theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. II.<br>Collision, storage, and adsorption. Journal of Chemical Physics, 2005, 123, 114704.                   | 1.2                | 44              |
| 360 | Functionally Rigid and Degenerate Molecular Shuttles. Chemistry - A European Journal, 2009, 15,<br>1115-1122.                                                                                         | 1.7                | 44              |

| #   | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 361 | Absolute Entropy and Energy of Carbon Dioxide Using the Two-Phase Thermodynamic Model. Journal of Chemical Theory and Computation, 2011, 7, 1893-1901.                                                                                      | 2.3 | 44        |
| 362 | Bihelix: Towards <i>de novo</i> structure prediction of an ensemble of Gâ€protein coupled receptor conformations. Proteins: Structure, Function and Bioinformatics, 2012, 80, 505-518.                                                      | 1.5 | 44        |
| 363 | Ab initio theoretical results on the stability of cyclic ozone. Journal of Chemical Physics, 1977, 67, 2377.                                                                                                                                | 1.2 | 43        |
| 364 | The low lying states of ammonia; generalized valence bond and configuration interaction studies.<br>Chemical Physics, 1977, 19, 131-136.                                                                                                    | 0.9 | 43        |
| 365 | Test of the Binding Threshold Hypothesis for olfactory receptors: Explanation of the differential binding of ketones to the mouse and human orthologs of olfactory receptor 912-93. Protein Science, 2005, 14, 703-710.                     | 3.1 | 43        |
| 366 | Dynamic behavior of fully solvated beta2-adrenergic receptor, embedded in the membrane with bound<br>agonist or antagonist. Proceedings of the National Academy of Sciences of the United States of<br>America, 2006, 103, 4882-4887.       | 3.3 | 43        |
| 367 | Functional selectivity of dopamine D1 receptor agonists in regulating the fate of internalized receptors. Neuropharmacology, 2007, 52, 562-575.                                                                                             | 2.0 | 43        |
| 368 | Nucleation of amorphous shear bands at nanotwins in boron suboxide. Nature Communications, 2016, 7, 11001.                                                                                                                                  | 5.8 | 43        |
| 369 | Polarizable charge equilibration model for predicting accurate electrostatic interactions in molecules and solids. Journal of Chemical Physics, 2017, 146, 124117.                                                                          | 1.2 | 43        |
| 370 | Electrochemical Switching of a Fluorescent Molecular Rotor Embedded within a Bistable Rotaxane.<br>Journal of the American Chemical Society, 2020, 142, 11835-11846.                                                                        | 6.6 | 43        |
| 371 | The DFT-ReaxFF Hybrid Reactive Dynamics Method with Application to the Reductive Decomposition<br>Reaction of the TFSI and DOL Electrolyte at a Lithium–Metal Anode Surface. Journal of Physical<br>Chemistry Letters, 2021, 12, 1300-1306. | 2.1 | 43        |
| 372 | Exchange kinetic energy, contragradience, and chemical binding. Chemical Physics Letters, 1970, 5, 45-49.                                                                                                                                   | 1.2 | 42        |
| 373 | Atomic simulations of kinetic friction and its velocity dependence atAlâ^•Alandαâ^'Al2O3â^•αâ^'Al2O3interfaces.<br>Physical Review B, 2005, 72, .                                                                                           | 1.1 | 42        |
| 374 | Annealing kinetics of electrodeposited lithium dendrites. Journal of Chemical Physics, 2015, 143, 134701.                                                                                                                                   | 1.2 | 42        |
| 375 | Correlation Analysis of Chemical Bonds. Journal of Physical Chemistry A, 1998, 102, 2919-2933.                                                                                                                                              | 1.1 | 41        |
| 376 | Multiscale modeling and simulation methods with applications to dendritic polymers. Computational and Theoretical Polymer Science, 2001, 11, 345-356.                                                                                       | 1.1 | 41        |
| 377 | Characterization of the active site of yeast RNA polymerase II by DFT and ReaxFF calculations.<br>Theoretical Chemistry Accounts, 2008, 120, 479-489.                                                                                       | 0.5 | 41        |
| 378 | Modeling High Rate Impact Sensitivity of Perfect RDX and HMX Crystals by ReaxFF Reactive Dynamics.<br>Journal of Energetic Materials, 2010, 28, 92-127.                                                                                     | 1.0 | 41        |

| #   | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 379 | Reactivity of a Series of Isostructural Cobalt Pincer Complexes with CO <sub>2</sub> , CO, and H <sup>+</sup> . Inorganic Chemistry, 2014, 53, 13031-13041.                                                                     | 1.9 | 41        |
| 380 | CO <sub>2</sub> reduction on pure Cu produces only H <sub>2</sub> after subsurface O is depleted:<br>Theory and experiment. Proceedings of the National Academy of Sciences of the United States of<br>America, 2021, 118, .    | 3.3 | 41        |
| 381 | Electronic states of silicon vacancy. I. Covalent states. Physical Review B, 1978, 18, 2831-2839.                                                                                                                               | 1.1 | 40        |
| 382 | Stabilization of α-Helices by Dipoleâ^'Dipole Interactions within α-Helices. Journal of Physical Chemistry B,<br>2000, 104, 7784-7789.                                                                                          | 1.2 | 40        |
| 383 | Superprotonic phase transition ofCsHSO4: A molecular dynamics simulation study. Physical Review B, 2005, 72, .                                                                                                                  | 1.1 | 40        |
| 384 | ReaxFF Reactive Force-Field Modeling of the Triple-Phase Boundary in a Solid Oxide Fuel Cell. Journal of Physical Chemistry Letters, 2014, 5, 4039-4043.                                                                        | 2.1 | 40        |
| 385 | Accurate Ab Initio Quantum Mechanics Simulations of Bi <sub>2</sub> Se <sub>3</sub> and<br>Bi <sub>2</sub> Te <sub>3</sub> Topological Insulator Surfaces. Journal of Physical Chemistry Letters,<br>2015, 6, 3792-3796.        | 2.1 | 40        |
| 386 | Role of Ligand Protonation in Dihydrogen Evolution from a Pentamethylcyclopentadienyl Rhodium<br>Catalyst. Inorganic Chemistry, 2017, 56, 11375-11386.                                                                          | 1.9 | 40        |
| 387 | Atomistic Simulations of Corrosion Inhibitors Adsorbed on Calcite Surfaces I. Force field Parameters for Calcite. Journal of Physical Chemistry B, 2001, 105, 10746-10752.                                                      | 1.2 | 39        |
| 388 | First-Principles-Based Dispersion Augmented Density Functional Theory: From Molecules to Crystals.<br>Journal of Physical Chemistry Letters, 2010, 1, 2550-2555.                                                                | 2.1 | 39        |
| 389 | Toward a Process-Based Molecular Model of SiC Membranes. 1. Development of a Reactive Force Field.<br>Journal of Physical Chemistry C, 2013, 117, 3308-3319.                                                                    | 1.5 | 39        |
| 390 | Size-Matched Radical Multivalency. Journal of the American Chemical Society, 2017, 139, 3986-3998.                                                                                                                              | 6.6 | 39        |
| 391 | Free Energy Barrier for Molecular Motions in Bistable [2]Rotaxane Molecular Electronic Devices.<br>Journal of Physical Chemistry A, 2009, 113, 2136-2143.                                                                       | 1.1 | 38        |
| 392 | Mechanism for Activation of Molecular Oxygen by <i>cis</i> -<br>and <i>trans</i> -(Pyridine) <sub>2</sub> Pd(OAc)H: Pd <sup>0</sup> versus Direct Insertion. Journal of<br>the American Chemical Society, 2009, 131, 1416-1425. | 6.6 | 38        |
| 393 | Equilibrium 2H/1H fractionations in organic molecules: I. Experimental calibration of ab initio calculations. Geochimica Et Cosmochimica Acta, 2009, 73, 7060-7075.                                                             | 1.6 | 38        |
| 394 | Mechanisms Underlying the Mpemba Effect in Water from Molecular Dynamics Simulations. Journal of<br>Physical Chemistry C, 2015, 119, 2622-2629.                                                                                 | 1.5 | 38        |
| 395 | Influence of Elastic Deformation on Single-Wall Carbon Nanotube Atomic Force Microscopy Probe<br>Resolution. Journal of Physical Chemistry B, 2004, 108, 13613-13618.                                                           | 1.2 | 37        |
| 396 | 3-Dimensional Structures of G Protein-Coupled Receptors and Binding Sites of Agonists and Antagonists. Journal of Nutrition, 2007, 137, 1528S-1538S.                                                                            | 1.3 | 37        |

| #   | Article                                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 397 | Time Resolved Studies of Interfacial Reactions of Ozone with Pulmonary Phospholipid Surfactants<br>Using Field Induced Droplet Ionization Mass Spectrometry. Journal of Physical Chemistry B, 2010, 114,<br>9496-9503.                                                                             | 1.2 | 37        |
| 398 | Improved H <sub>2</sub> Storage in Zeolitic Imidazolate Frameworks Using Li <sup>+</sup> ,<br>Na <sup>+</sup> , and K <sup>+</sup> Dopants, with an Emphasis on Delivery H <sub>2</sub> Uptake.<br>Journal of Physical Chemistry C, 2011, 115, 3507-3512.                                          | 1.5 | 37        |
| 399 | Structure-Based Prediction of Subtype Selectivity of Histamine H <sub>3</sub> Receptor Selective Antagonists in Clinical Trials. Journal of Chemical Information and Modeling, 2011, 51, 3262-3274.                                                                                                | 2.5 | 37        |
| 400 | Highly Selective Electrocatalytic Reduction of CO <sub>2</sub> into Methane on Cu–Bi Nanoalloys.<br>Journal of Physical Chemistry Letters, 2020, 11, 7261-7266.                                                                                                                                    | 2.1 | 37        |
| 401 | Reaction Mechanism, Origins of Enantioselectivity, and Reactivity Trends in Asymmetric Allylic<br>Alkylation: A Comprehensive Quantum Mechanics Investigation of a<br>C(sp <sup>3</sup> )–C(sp <sup>3</sup> ) Cross-Coupling. Journal of the American Chemical Society, 2020,<br>142, 13917-13933. | 6.6 | 37        |
| 402 | The Rydberg states of trans-butadiene from generalized valence bond and configuration interaction calculations. Chemical Physics, 1980, 53, 251-263.                                                                                                                                               | 0.9 | 36        |
| 403 | Dual-space approach for density-functional calculations of two- and three-dimensional crystals using Gaussian basis functions. Physical Review B, 1995, 52, 2348-2361.                                                                                                                             | 1.1 | 36        |
| 404 | Chelators for Radioimmunotherapy:Â I. NMR and Ab Initio Calculation Studies on<br>1,4,7,10-Tetra(carboxyethyl)-1,4,7,10-tetraazacyclododecane (DO4Pr) and<br>1,4,7-Tris(carboxymethyl)-10-(carboxyethyl)-1,4,7,10-tetraazacyclododecane (DO3A1Pr). Inorganic<br>Chemistry, 2001, 40, 4310-4318.    | 1.9 | 36        |
| 405 | Strategies for multiscale modeling and simulation of organic materials: polymers and biopolymers.<br>Computational and Theoretical Polymer Science, 2001, 11, 329-343.                                                                                                                             | 1.1 | 36        |
| 406 | The Role of Confined Water in Ionic Liquid Electrolytes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2012, 3, 556-559.                                                                                                                                                   | 2.1 | 36        |
| 407 | Studies of fullerenes and carbon nanotubes by an extended bond order potential. Nanotechnology, 1999, 10, 263-268.                                                                                                                                                                                 | 1.3 | 35        |
| 408 | Secondary Organic Aerosol Formation by Heterogeneous Reactions of Aldehydes and Ketones:Â A<br>Quantum Mechanical Study. Environmental Science & Technology, 2006, 40, 2333-2338.                                                                                                                  | 4.6 | 35        |
| 409 | Parametrization of a reactive force field for aluminum hydride. Journal of Chemical Physics, 2009, 131, 044501.                                                                                                                                                                                    | 1.2 | 35        |
| 410 | Generalized valence bond wave functions in quantum Monte Carlo. Journal of Chemical Physics, 2010, 132, 164110.                                                                                                                                                                                    | 1.2 | 35        |
| 411 | Chemistry in the Center for Catalytic Hydrocarbon Functionalization: An Energy Frontier Research<br>Center. Catalysis Letters, 2011, 141, 213-221.                                                                                                                                                 | 1.4 | 35        |
| 412 | Prediction of the Chapman–Jouguet chemical equilibrium state in a detonation wave from first<br>principles based reactive molecular dynamics. Physical Chemistry Chemical Physics, 2016, 18, 2015-2022.                                                                                            | 1.3 | 35        |
| 413 | Multilayer Two-Dimensional Water Structure Confined in MoS <sub>2</sub> . Journal of Physical Chemistry C, 2017, 121, 16021-16028.                                                                                                                                                                 | 1.5 | 35        |
| 414 | Magnetic Hyperfine Structure and Core Polarization in the Excited States of Lithium. Physical Review, 1968, 176, 106-114.                                                                                                                                                                          | 2.7 | 34        |

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 415 | Theoretical studies of the dissociative adsorption of H2 on Ni(001) using ab initio parameterized LEPS calculations. Surface Science, 1980, 95, 391-402.                                                               | 0.8 | 34        |
| 416 | Mechanism of Oxidative Shuttling for [2]Rotaxane in a Stoddartâ^'Heath Molecular Switch:  Density<br>Functional Theory Study with Continuum-Solvation Model. Journal of Physical Chemistry B, 2006, 110,<br>7660-7665. | 1.2 | 34        |
| 417 | Competing, Coverage-Dependent Decomposition Pathways for C <sub>2</sub> H <sub><i>y</i></sub><br>Species on Nickel (111). Journal of Physical Chemistry C, 2010, 114, 20028-20041.                                     | 1.5 | 34        |
| 418 | Interaction of e. coli outer-membrane protein A with sugars on the receptors of the brain microvascular endothelial cells. Proteins: Structure, Function and Bioinformatics, 2002, 50, 213-221.                        | 1.5 | 33        |
| 419 | The Predicted 3D Structures of the Human M1 Muscarinic Acetylcholine Receptor with Agonist or Antagonist Bound. ChemMedChem, 2006, 1, 878-890.                                                                         | 1.6 | 33        |
| 420 | Predicted Optimum Composition for the Glass-Forming Ability of Bulk Amorphous Alloys: Application to Cu–Zr–Al. Journal of Physical Chemistry Letters, 2012, 3, 3143-3148.                                              | 2.1 | 33        |
| 421 | Dramatic Increase in the Oxygen Reduction Reaction for Platinum Cathodes from Tuning the Solvent<br>Dielectric Constant. Angewandte Chemie - International Edition, 2014, 53, 6669-6672.                               | 7.2 | 33        |
| 422 | Sliding-Ring Catenanes. Journal of the American Chemical Society, 2016, 138, 10214-10225.                                                                                                                              | 6.6 | 33        |
| 423 | CO Coupling Chemistry of a Terminal Mo Carbide: Sequential Addition of Proton, Hydride, and CO<br>Releases Ethenone. Journal of the American Chemical Society, 2019, 141, 15664-15674.                                 | 6.6 | 33        |
| 424 | Autobifunctional Mechanism of Jagged Pt Nanowires for Hydrogen Evolution Kinetics via End-to-End<br>Simulation. Journal of the American Chemical Society, 2021, 143, 5355-5363.                                        | 6.6 | 33        |
| 425 | Virtual Screening for Binding of Phenylalanine Analogues to Phenylalanyl-tRNA Synthetase. Journal of<br>the American Chemical Society, 2002, 124, 14442-14449.                                                         | 6.6 | 32        |
| 426 | The structure of human serotonin 2c G-protein-coupled receptor bound to agonists and antagonists.<br>Journal of Molecular Graphics and Modelling, 2008, 27, 66-81.                                                     | 1.3 | 32        |
| 427 | Interfacial Thermodynamics of Water and Six Other Liquid Solvents. Journal of Physical Chemistry B, 2014, 118, 5943-5956.                                                                                              | 1.2 | 32        |
| 428 | QM-Mechanism-Based Hierarchical High-Throughput in Silico Screening Catalyst Design for Ammonia<br>Synthesis. Journal of the American Chemical Society, 2018, 140, 17702-17710.                                        | 6.6 | 32        |
| 429 | Effects of High and Low Salt Concentrations in Electrolytes at Lithium–Metal Anode Surfaces Using DFT-ReaxFF Hybrid Molecular Dynamics Method. Journal of Physical Chemistry Letters, 2021, 12, 2922-2929.             | 2.1 | 32        |
| 430 | A multiscale approach for modeling crystalline solids. Journal of Computer-Aided Materials Design, 2001, 8, 127-149.                                                                                                   | 0.7 | 31        |
| 431 | Molecular dynamics simulations to compute the bulk response of amorphous PMMA. Journal of Computer-Aided Materials Design, 2001, 8, 87-106.                                                                            | 0.7 | 31        |
| 432 | Nanopores of carbon nanotubes as practical hydrogen storage media. Applied Physics Letters, 2005, 87, 213113.                                                                                                          | 1.5 | 31        |

| #   | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 433 | Experimental and quantum mechanics investigations of early reactions of monomethylhydrazine with mixtures of NO2 and N2O4. Combustion and Flame, 2013, 160, 970-981.                                                                                  | 2.8 | 31        |
| 434 | Interface Structure in Li-Metal/[Pyr <sub>14</sub> ][TFSI]-Ionic Liquid System from ab Initio Molecular<br>Dynamics Simulations. Journal of Physical Chemistry Letters, 2019, 10, 4577-4586.                                                          | 2.1 | 31        |
| 435 | Liquefaction of H2 molecules upon exterior surfaces of carbon nanotube bundles. Applied Physics<br>Letters, 2005, 86, 203108.                                                                                                                         | 1.5 | 30        |
| 436 | Mechanistic Investigation of Iridium-Catalyzed Hydrovinylation of Olefins. Organometallics, 2006, 25, 1618-1625.                                                                                                                                      | 1.1 | 30        |
| 437 | Origin of static friction and its relationship to adhesion at the atomic scale. Physical Review B, 2007, 75, .                                                                                                                                        | 1.1 | 30        |
| 438 | Experimental Validation of the Predicted Binding Site of Escherichia coli K1 Outer Membrane Protein A<br>to Human Brain Microvascular Endothelial Cells. Journal of Biological Chemistry, 2010, 285,<br>37753-37761.                                  | 1.6 | 30        |
| 439 | Predicted structures of agonist and antagonist bound complexes of adenosine A <sub>3</sub><br>receptor. Proteins: Structure, Function and Bioinformatics, 2011, 79, 1878-1897.                                                                        | 1.5 | 30        |
| 440 | Measurement of the ground-state distributions in bistable mechanically interlocked molecules using slow scan rate cyclic voltammetry. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20416-20421.        | 3.3 | 30        |
| 441 | Deswelling Mechanisms of Surface-Grafted Poly(NIPAAm) Brush: Molecular Dynamics Simulation Approach. Journal of Physical Chemistry C, 2012, 116, 15974-15985.                                                                                         | 1.5 | 30        |
| 442 | Nanocomposites of Tantalumâ€Based Pyrochlore and Indium Hydroxide Showing High and Stable<br>Photocatalytic Activities for Overall Water Splitting and Carbon Dioxide Reduction. Angewandte<br>Chemie - International Edition, 2014, 53, 14216-14220. | 7.2 | 30        |
| 443 | Mechanisms and energetics of free radical initiated disulfide bond cleavage in model peptides and insulin by mass spectrometry. Chemical Science, 2015, 6, 4550-4560.                                                                                 | 3.7 | 30        |
| 444 | Nanotwins soften boron-rich boron carbide (B13C2). Applied Physics Letters, 2017, 110, .                                                                                                                                                              | 1.5 | 30        |
| 445 | Transport of hot carriers in plasmonic nanostructures. Physical Review Materials, 2019, 3, .                                                                                                                                                          | 0.9 | 30        |
| 446 | The excited electronic states of all-trans-1,3,5-hexatriene. Chemical Physics Letters, 1979, 60, 197-200.                                                                                                                                             | 1.2 | 29        |
| 447 | Aminomethanol water elimination: Theoretical examination. Journal of Chemical Physics, 2005, 123, 034304.                                                                                                                                             | 1.2 | 29        |
| 448 | Modeling the sorption dynamics of NaH using a reactive force field. Journal of Chemical Physics, 2008, 128, 164714.                                                                                                                                   | 1.2 | 29        |
| 449 | Influence of Constitution and Charge on Radical Pairing Interactions in Tris-radical Tricationic<br>Complexes. Journal of the American Chemical Society, 2016, 138, 8288-8300.                                                                        | 6.6 | 29        |
| 450 | The Oxygen Reduction Reaction on Graphene from Quantum Mechanics: Comparing Armchair and Zigzag Carbon Edges. Journal of Physical Chemistry C, 2017, 121, 24408-24417.                                                                                | 1.5 | 29        |

| #   | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 451 | First-principles–based reaction kinetics from reactive molecular dynamics simulations: Application to<br>hydrogen peroxide decomposition. Proceedings of the National Academy of Sciences of the United<br>States of America, 2019, 116, 18202-18208. | 3.3 | 29        |
| 452 | Artificial Intelligence and QM/MM with a Polarizable Reactive Force Field for Next-Generation Electrocatalysts. Matter, 2021, 4, 195-216.                                                                                                             | 5.0 | 29        |
| 453 | New Approach to Energy-Band Calculations with Results for Lithium Metal. Physical Review Letters, 1969, 23, 300-303.                                                                                                                                  | 2.9 | 28        |
| 454 | A generalized direct inversion in the iterative subspace approach for generalized valence bond wave functions. Journal of Chemical Physics, 1994, 100, 1226-1235.                                                                                     | 1.2 | 28        |
| 455 | Design of a nanomechanical fluid control valve based on functionalized silicon cantilevers: coupling molecular mechanics with classical engineering design. Nanotechnology, 2004, 15, 1405-1415.                                                      | 1.3 | 28        |
| 456 | The MPSim-Dock hierarchical docking algorithm: Application to the eight trypsin inhibitor cocrystals.<br>Journal of Computational Chemistry, 2005, 26, 48-71.                                                                                         | 1.5 | 28        |
| 457 | ReaxFF Monte Carlo reactive dynamics: Application to resolving the partial occupations of the M1 phase of the MoVNbTeO catalyst. Catalysis Today, 2010, 157, 71-76.                                                                                   | 2.2 | 28        |
| 458 | Predicted Structures and Dynamics for Agonists and Antagonists Bound to Serotonin 5-HT2B and 5-HT2C Receptors. Journal of Chemical Information and Modeling, 2011, 51, 420-433.                                                                       | 2.5 | 28        |
| 459 | Initial Decomposition of HMX Energetic Material from Quantum Molecular Dynamics and the<br>Molecular Structure Transition of β-HMX to Β-HMX. Journal of Physical Chemistry C, 2019, 123, 9231-9236.                                                   | 1.5 | 28        |
| 460 | Si-Doped Fe Catalyst for Ammonia Synthesis at Dramatically Decreased Pressures and Temperatures.<br>Journal of the American Chemical Society, 2020, 142, 8223-8232.                                                                                   | 6.6 | 28        |
| 461 | Dipole moments and electric field gradients for correlated wavefunctions of NO: The X 2 Î, A 2 Σ + , and<br>D 2 Σ + states. Chemical Physics Letters, 1975, 33, 18-24.                                                                                | 1.2 | 27        |
| 462 | New concepts of bonding in nonperiodic metallic systems. Journal of Non-Crystalline Solids, 1985, 75, 149-159.                                                                                                                                        | 1.5 | 27        |
| 463 | Predicting glycosaminoglycan surface protein interactions and implications for studying axonal growth. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13697-13702.                                       | 3.3 | 27        |
| 464 | The quantum mechanics-based polarizable force field for water simulations. Journal of Chemical Physics, 2018, 149, 174502.                                                                                                                            | 1.2 | 27        |
| 465 | Reaction mechanism and kinetics for ammonia synthesis on the Fe(211) reconstructed surface. Physical Chemistry Chemical Physics, 2019, 21, 11444-11454.                                                                                               | 1.3 | 27        |
| 466 | Optimal spline cutoffs for Coulomb and van der Waals interactions. Chemical Physics Letters, 1992, 193, 197-201.                                                                                                                                      | 1.2 | 26        |
| 467 | Assessment of phenomenological models for viscosity of liquids based on nonequilibrium atomistic simulations of copper. Journal of Chemical Physics, 2005, 123, 104506.                                                                               | 1.2 | 26        |
| 468 | Bifunctional Anchors Connecting Carbon Nanotubes to Metal Electrodes for Improved<br>Nanoelectronics. Journal of the American Chemical Society, 2007, 129, 9834-9835.                                                                                 | 6.6 | 26        |

| #   | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 469 | Concerning the Stability of the Negative IonsHâ^'andLiâ^'. Physical Review, 1968, 172, 7-12.                                                                                                                                 | 2.7 | 25        |
| 470 | Conduction properties of the organic superconductorκâ^'(BEDTâ^'TTF)2Cu(NCS)2based on<br>Hubbard–unrestricted-Hartree-Fock band calculations. Physical Review B, 1997, 56, 11907-11919.                                       | 1.1 | 25        |
| 471 | Application of the Self-Assembled Monolayer (SAM) Model to Dithiophosphate and Dithiocarbamate<br>Engine Wear Inhibitors. Journal of Physical Chemistry A, 2000, 104, 2508-2524.                                             | 1.1 | 25        |
| 472 | Partitioning of Poly(amidoamine) Dendrimers between n-Octanol and Water. Environmental Science<br>& Technology, 2009, 43, 5123-5129.                                                                                         | 4.6 | 25        |
| 473 | The lower electronic states of MoN. Chemical Physics, 1983, 81, 263-271.                                                                                                                                                     | 0.9 | 24        |
| 474 | Tunneling Mechanism Implications from an STM Study of H3C(CH2)15HCCCH(CH2)15CH3 on Graphite and C14H29OH on MoS2. Journal of Physical Chemistry B, 1999, 103, 7077-7080.                                                     | 1.2 | 24        |
| 475 | Prediction of the 3D Structure of FMRFâ€amide Neuropeptides Bound to the Mouse MrgC11 GPCR and Experimental Validation. ChemBioChem, 2007, 8, 1527-1539.                                                                     | 1.3 | 24        |
| 476 | Molecular Dynamics Simulations of Metal Clusters Supported on Fishbone Carbon Nanofibers.<br>Journal of Physical Chemistry C, 2010, 114, 3522-3530.                                                                          | 1.5 | 24        |
| 477 | DFT Virtual Screening Identifies Rhodium–Amidinate Complexes As Potential Homogeneous Catalysts<br>for Methane-to-Methanol Oxidation. ACS Catalysis, 2014, 4, 4455-4465.                                                     | 5.5 | 24        |
| 478 | Rhodium Bis(quinolinyl)benzene Complexes for Methane Activation and Functionalization. Chemistry -<br>A European Journal, 2015, 21, 1286-1293.                                                                               | 1.7 | 24        |
| 479 | Pressureâ€Dependent Polymorphism and Bandâ€Gap Tuning of Methylammonium Lead Iodide Perovskite.<br>Angewandte Chemie, 2016, 128, 6650-6654.                                                                                  | 1.6 | 24        |
| 480 | Prediction of the crystal packing of diâ€ŧetrazineâ€ŧetroxide (DTTO) energetic material. Journal of<br>Computational Chemistry, 2016, 37, 163-167.                                                                           | 1.5 | 24        |
| 481 | Predicted Operando Polymerization at Lithium Anode via Boron Insertion. ACS Energy Letters, 2021, 6, 2320-2327.                                                                                                              | 8.8 | 24        |
| 482 | An NMR and Quantum-Mechanical Investigation of Tetrahydrofuran Solvent Effects on the<br>Conformational Equilibria of 1,4-Butanedioic Acid and Its Salts. Journal of the American Chemical<br>Society, 2002, 124, 4481-4486. | 6.6 | 23        |
| 483 | Acid atalyzed Nucleophilic Aromatic Substitution: Experimental and Theoretical Exploration of a<br>Multistep Mechanism. Chemistry - A European Journal, 2008, 14, 3954-3960.                                                 | 1.7 | 23        |
| 484 | Hypervelocity Impact Effect of Molecules from Enceladus' Plume and Titan's Upper Atmosphere on<br>NASA's Cassini Spectrometer from Reactive Dynamics Simulation. Physical Review Letters, 2012, 109,<br>213201.              | 2.9 | 23        |
| 485 | Synthesis of single-component metallic glasses by thermal spray of nanodroplets on amorphous substrates. Applied Physics Letters, 2012, 100, .                                                                               | 1.5 | 23        |
| 486 | Structure Prediction of G Protein-Coupled Receptors and Their Ensemble of Functionally Important<br>Conformations. Methods in Molecular Biology, 2012, 914, 237-254.                                                         | 0.4 | 23        |

| #   | Article                                                                                                                                                                                                                                                | IF                | CITATIONS           |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|
| 487 | Accurate non-bonded potentials based on periodic quantum mechanics calculations for use in molecular simulations of materials and systems. Journal of Chemical Physics, 2019, 151, 154111.                                                             | 1.2               | 23                  |
| 488 | Reaction Mechanisms, Kinetics, and Improved Catalysts for Ammonia Synthesis from Hierarchical High<br>Throughput Catalyst Design. Accounts of Chemical Research, 2022, 55, 1124-1134.                                                                  | 7.6               | 23                  |
| 489 | Efficient Monte Carlo method for free energy evaluation of polymer chains. Fluid Phase Equilibria, 1998, 144, 415-425.                                                                                                                                 | 1.4               | 22                  |
| 490 | Structure-based design of mutant Methanococcus jannaschii tyrosyl-tRNA synthetase for<br>incorporation of O-methyl-L-tyrosine. Proceedings of the National Academy of Sciences of the United<br>States of America, 2002, 99, 6579-6584.                | 3.3               | 22                  |
| 491 | The MSXX Force Field for the Barium Sulfateâ^'Water Interface. Journal of Physical Chemistry B, 2002, 106, 9951-9966.                                                                                                                                  | 1.2               | 22                  |
| 492 | Structures, Mechanisms, and Kinetics of Ammoxidation and Selective Oxidation of Propane Over the M2 Phase of MoVNbTeO Catalysts. Topics in Catalysis, 2011, 54, 659-668.                                                                               | 1.3               | 22                  |
| 493 | Inhibition of Hotspot Formation in Polymer Bonded Explosives Using an Interface Matching Low<br>Density Polymer Coating at the Polymer–Explosive Interface. Journal of Physical Chemistry C, 2014, 118,<br>19918-19928.                                | 1.5               | 22                  |
| 494 | Selective Enhancement of Methane Formation in Electrochemical CO <sub>2</sub> Reduction Enabled by a Raman-Inactive Oxygen-Containing Species on Cu. ACS Catalysis, 2022, 12, 6036-6046.                                                               | 5.5               | 22                  |
| 495 | Spinâ€Generalized SCF Wavefunctions for H2O, OH, and O. Journal of Chemical Physics, 1970, 53, 1803-1814.                                                                                                                                              | 1.2               | 21                  |
| 496 | Density Functional Theory Study of the Geometry, Energetics, and Reconstruction Process of Si(111)<br>Surfaces. Langmuir, 2005, 21, 12404-12414.                                                                                                       | 1.6               | 21                  |
| 497 | Reactive Dynamics Study of Hypergolic Bipropellants: Monomethylhydrazine and Dinitrogen Tetroxide.<br>Journal of Physical Chemistry B, 2012, 116, 14136-14145.                                                                                         | 1.2               | 21                  |
| 498 | ReaxFF reactive molecular dynamics on silicon pentaerythritol tetranitrate crystal validates the mechanism for the colossal sensitivity. Physical Chemistry Chemical Physics, 2014, 16, 23779-23791.                                                   | 1.3               | 21                  |
| 499 | Predicted detonation properties at the Chapman–Jouguet state for proposed energetic materials (MTO) Tj ETG<br>Chemical Physics, 2018, 20, 3953-3969.                                                                                                   | Qq1 1 0.78<br>1.3 | 34314 rgBT  0<br>21 |
| 500 | Role of Ferryl Ion Intermediates in Fast Fenton Chemistry on Aqueous Microdroplets. Environmental<br>Science & Technology, 2021, 55, 14370-14377.                                                                                                      | 4.6               | 21                  |
| 501 | Prediction of the Threeâ€Dimensional Structure for the Rat Urotensinâ€II Receptor, and Comparison of the Antagonist Binding Sites and Binding Selectivity between Human and Rat Receptors from Atomistic Simulations. ChemMedChem, 2010, 5, 1594-1608. | 1.6               | 20                  |
| 502 | The effect of different environments on Nafion degradation: Quantum mechanics study. Journal of Membrane Science, 2013, 437, 276-285.                                                                                                                  | 4.1               | 20                  |
| 503 | Predicted roles of defects on band offsets and energetics at CIGS (Cu(In,Ga)Se2/CdS) solar cell interfaces and implications for improving performance. Journal of Chemical Physics, 2014, 141, 094701.                                                 | 1.2               | 20                  |
| 504 | Optimizing the oxygen evolution reaction for electrochemical water oxidation by tuning solvent properties. Nanoscale, 2015, 7, 4514-4521.                                                                                                              | 2.8               | 20                  |

| #   | Article                                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 505 | First-Principles Study of Iron Oxide Polytypes: Comparison of GGA+ <i>U</i> and Hybrid Functional Method. Journal of Physical Chemistry C, 2015, 119, 556-562.                                                                                                                                       | 1.5 | 20        |
| 506 | First-Order Phase Transition in Liquid Ag to the Heterogeneous G-Phase. Journal of Physical Chemistry<br>Letters, 2020, 11, 632-645.                                                                                                                                                                 | 2.1 | 20        |
| 507 | Graphitization of low-density amorphous carbon for electrocatalysis electrodes from ReaxFF reactive dynamics. Carbon, 2021, 183, 940-947.                                                                                                                                                            | 5.4 | 20        |
| 508 | Orbital Description and Properties of the BH Molecule. Journal of Chemical Physics, 1972, 57, 5296-5310.                                                                                                                                                                                             | 1.2 | 19        |
| 509 | Solvent Effects on the Secondary Structures of Proteins. Journal of Physical Chemistry A, 2000, 104, 2498-2503.                                                                                                                                                                                      | 1.1 | 19        |
| 510 | Ab-initio studies of pressure induced phase transitions in BaO. Journal of Computer-Aided Materials Design, 2001, 8, 193-202.                                                                                                                                                                        | 0.7 | 19        |
| 511 | Dynamic Charge Equilibration-Morse stretch force field: Application to energetics of pure silica zeolites. Journal of Computational Chemistry, 2002, 23, 1507-1514.                                                                                                                                  | 1.5 | 19        |
| 512 | Initial Steps in Forming the Electrode–Electrolyte Interface: H2O Adsorption and Complex Formation<br>on the Ag(111) Surface from Combining Quantum Mechanics Calculations and Ambient Pressure X-ray<br>Photoelectron Spectroscopy. Journal of the American Chemical Society, 2019, 141, 6946-6954. | 6.6 | 19        |
| 513 | Synergy between a Silver–Copper Surface Alloy Composition and Carbon Dioxide Adsorption and Activation. ACS Applied Materials & Interfaces, 2020, 12, 25374-25382.                                                                                                                                   | 4.0 | 19        |
| 514 | Theoretical studies of the oxidized and reduced states of a model for the active site of rubredoxin.<br>Journal of the American Chemical Society, 1977, 99, 3505-3507.                                                                                                                               | 6.6 | 18        |
| 515 | Quantum Mechanical–Rapid Prototyping Applied to Methane Activation. Topics in Catalysis, 2003, 23,<br>81-98.                                                                                                                                                                                         | 1.3 | 18        |
| 516 | Lancifodilactone G: Insights about an Unusually Stable Enol. Journal of Organic Chemistry, 2008, 73, 6853-6856.                                                                                                                                                                                      | 1.7 | 18        |
| 517 | Quantum mechanics based force field for carbon (QMFF-Cx) validated to reproduce the mechanical and thermodynamics properties of graphite. Journal of Chemical Physics, 2010, 133, 134114.                                                                                                            | 1.2 | 18        |
| 518 | Composition Dependence of Glass Forming Propensity in Alâ^'Ni Alloys. Journal of Physical Chemistry C,<br>2011, 115, 2320-2331.                                                                                                                                                                      | 1.5 | 18        |
| 519 | Electronic Structures of Group 9 Metallocorroles with Axial Ammines. Inorganic Chemistry, 2011, 50, 764-770.                                                                                                                                                                                         | 1.9 | 18        |
| 520 | Thermodynamics of Water Stabilization of Carboxybetaine Hydrogels from Molecular Dynamics<br>Simulations. Journal of Physical Chemistry Letters, 2011, 2, 1757-1760.                                                                                                                                 | 2.1 | 18        |
| 521 | Activation and Oxidation of Mesitylene C–H Bonds by (Phebox)Iridium(III) Complexes. Organometallics,<br>2015, 34, 2879-2888.                                                                                                                                                                         | 1.1 | 18        |
| 522 | An NMR and Quantum Mechanical Investigation of Solvent Effects on Conformational Equilibria of Butanedinitrile. Journal of the American Chemical Society, 2002, 124, 9318-9322.                                                                                                                      | 6.6 | 17        |

| #   | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 523 | Role of Specific Cations and Water Entropy on the Stability of Branched DNA Motif Structures.<br>Journal of Physical Chemistry B, 2012, 116, 12159-12167.                                                                                                | 1.2 | 17        |
| 524 | Scaled Effective Solvent Method for Predicting the Equilibrium Ensemble of Structures with Analysis<br>of Thermodynamic Properties of Amorphous Polyethylene Glycol–Water Mixtures. Journal of Physical<br>Chemistry B, 2013, 117, 916-927.              | 1.2 | 17        |
| 525 | Equilibrium 2H/1H fractionation in organic molecules: III. Cyclic ketones and hydrocarbons.<br>Geochimica Et Cosmochimica Acta, 2013, 107, 82-95.                                                                                                        | 1.6 | 17        |
| 526 | Cubic Nonlinearity Driven Up-Conversion in High-Field Plasmonic Hot Carrier Systems. Journal of<br>Physical Chemistry C, 2016, 120, 21056-21062.                                                                                                         | 1.5 | 17        |
| 527 | Highly Stable Organic Bisradicals Protected by Mechanical Bonds. Journal of the American Chemical Society, 2020, 142, 7190-7197.                                                                                                                         | 6.6 | 17        |
| 528 | Ab initio predictions of large hyperpolarizability push-pull polymers. Julolidinyl-n-isoxazolone and<br>julolidinyl-n-N,N′-diethylthiobarbituric acid. Chemical Physics Letters, 1995, 242, 543-547.                                                     | 1.2 | 16        |
| 529 | Fidelity of Phenylalanyl-tRNA Synthetase in Binding the Natural Amino Acids. Journal of Physical<br>Chemistry B, 2003, 107, 11549-11557.                                                                                                                 | 1.2 | 16        |
| 530 | Design and validation of non-metal oxo complexes for C–H activation. Chemical Communications, 2014, 50, 1748.                                                                                                                                            | 2.2 | 16        |
| 531 | Highly Efficient Ni-Doped Iron Catalyst for Ammonia Synthesis from Quantum-Mechanics-Based<br>Hierarchical High-Throughput Catalyst Screening. Journal of Physical Chemistry C, 2019, 123,<br>17375-17383.                                               | 1.5 | 16        |
| 532 | Orbital Description of the Excited States of LiH. Journal of Chemical Physics, 1972, 56, 3348-3359.                                                                                                                                                      | 1.2 | 15        |
| 533 | Conformational analysis of aqueous pullulan oligomers: an effective computational approach.<br>Polymer, 2002, 43, 509-516.                                                                                                                               | 1.8 | 15        |
| 534 | Chelating Base Effects in Palladium-Mediated Activation of Molecular Oxygen. Organometallics, 2012, 31, 545-552.                                                                                                                                         | 1.1 | 15        |
| 535 | Analytic Derivatives of Quartic-Scaling Doubly Hybrid XYGI-OS Functional: Theory, Implementation,<br>and Benchmark Comparison with M06-2X and MP2 Geometries for Nonbonded Complexes. Journal of<br>Chemical Theory and Computation, 2013, 9, 1971-1976. | 2.3 | 15        |
| 536 | Use of Ligand Steric Properties to Control the Thermodynamics and Kinetics of Oxidative Addition and Reductive Elimination with Pincer-Ligated Rh Complexes. Organometallics, 2020, 39, 1917-1933.                                                       | 1.1 | 15        |
| 537 | Theoretical studies of the geometries of O and S overlayers on the (100) surface of nickel. Solid State Communications, 1977, 23, 907-910.                                                                                                               | 0.9 | 14        |
| 538 | Domain Motions in Phosphoglycerate Kinase using Hierarchical NEIMO Molecular Dynamics<br>Simulations. Journal of Physical Chemistry A, 2000, 104, 2375-2383.                                                                                             | 1.1 | 14        |
| 539 | Prediction of the 3-D structure of rat MrgA G protein-coupled receptor and identification of its binding site. Journal of Molecular Graphics and Modelling, 2007, 26, 800-812.                                                                           | 1.3 | 14        |
| 540 | Quantum chemical insights into the dissociation of nitric acid on the surface of aqueous electrolytes. International Journal of Quantum Chemistry, 2013, 113, 413-417.                                                                                   | 1.0 | 14        |

| #   | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 541 | Predicted 3D structures of olfactory receptors with details of odorant binding to OR1G1. Journal of Computer-Aided Molecular Design, 2014, 28, 1175-1190.                                                                                                    | 1.3  | 14        |
| 542 | Theoretical and Experimental Studies of the Dechlorination Mechanism of Carbon Tetrachloride on a<br>Vivianite Ferrous Phosphate Surface. Journal of Physical Chemistry A, 2015, 119, 5714-5722.                                                             | 1.1  | 14        |
| 543 | Dual-Phase Mechanism for the Catalytic Conversion of <i>n</i> -Butane to Maleic Anhydride by the<br>Vanadyl Pyrophosphate Heterogeneous Catalyst. Journal of Physical Chemistry C, 2017, 121, 24069-24076.                                                   | 1.5  | 14        |
| 544 | Extension of the Polarizable Charge Equilibration Model to Higher Oxidation States with Applications<br>to Ge, As, Se, Br, Sn, Sb, Te, I, Pb, Bi, Po, and At Elements. Journal of Physical Chemistry A, 2018, 122,<br>639-645.                               | 1.1  | 14        |
| 545 | Dealloyed Pt2Os nanoparticles for enhanced oxygen reduction reaction in acidic electrolytes. Applied<br>Catalysis B: Environmental, 2014, 150-151, 636-646.                                                                                                  | 10.8 | 13        |
| 546 | Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation. Acta Materialia, 2016, 106, 171-181.                                                                                             | 3.8  | 13        |
| 547 | The 3D Structure of Human DP Prostaglandin G-Protein-Coupled Receptor Bound to<br>Cyclopentanoindole Antagonist, Predicted Using the DuplexBiHelix Modification of the GEnSeMBLE<br>Method. Journal of Chemical Theory and Computation, 2018, 14, 1624-1642. | 2.3  | 13        |
| 548 | DFT Mechanistic Study of Methane Mono-Esterification by Hypervalent lodine Alkane Oxidation<br>Process. Journal of Physical Chemistry C, 2019, 123, 15674-15684.                                                                                             | 1.5  | 13        |
| 549 | First-Principles Molecular Dynamics in Metal-Halide Perovskites: Contrasting Generalized Gradient<br>Approximation and Hybrid Functionals. Journal of Physical Chemistry Letters, 2021, 12, 11886-11893.                                                     | 2.1  | 13        |
| 550 | The Rydberg states of trans-1,3-5-hexatriene from ab initio and configuration interaction calculations.<br>Chemical Physics, 1980, 53, 265-277.                                                                                                              | 0.9  | 12        |
| 551 | Cell multipole method for molecular simulations in bulk and confined systems. Journal of Chemical Physics, 2003, 118, 5347-5355.                                                                                                                             | 1.2  | 12        |
| 552 | Thermodynamic Stability of Zimmerman Self-Assembled Dendritic Supramolecules from Atomistic<br>Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2004, 108, 10041-10052.                                                                      | 1.2  | 12        |
| 553 | Synergetic Evolution of Sacrificial Bonds and Strain-Induced Defects Facilitating Large Deformation of the Bi <sub>2</sub> Te <sub>3</sub> Semiconductor. ACS Applied Energy Materials, 2020, 3, 3042-3048.                                                  | 2.5  | 12        |
| 554 | Predictions of Chemical Shifts for Reactive Intermediates in CO2 Reduction under Operando<br>Conditions. ACS Applied Materials & Interfaces, 2021, 13, 31554-31560.                                                                                          | 4.0  | 12        |
| 555 | Spatially projected generalized valence bond description of the pi-states of allyl radical. Theoretica Chimica Acta, 1975, 37, 253-267.                                                                                                                      | 0.9  | 11        |
| 556 | Fidelity of seryl-tRNA synthetase to binding of natural amino acids from HierDock first principles computations. Protein Engineering, Design and Selection, 2006, 19, 195-203.                                                                               | 1.0  | 11        |
| 557 | Methane Activation with Rhenium Catalysts. 1. Bidentate Oxygenated Ligands. Organometallics, 2007, 26, 1505-1511.                                                                                                                                            | 1.1  | 11        |
| 558 | Reactive molecular dynamics force field for the dissociation of light hydrocarbons on Ni(111).<br>Molecular Simulation, 2008, 34, 967-972.                                                                                                                   | 0.9  | 11        |

| #   | Article                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 559 | The Transition Metal Catalyzed [ï€2s + ï€2s + ïƒ2s + ïƒ2s] Pericyclic Reaction: Woodward–Hoffmann Rules,<br>Aromaticity, and Electron Flow. Journal of the American Chemical Society, 2020, 142, 19033-19039.                                                                         | 6.6 | 11        |
| 560 | Spatiotemporal Temperature and Pressure in Thermoplasmonic Gold Nanosphere–Water Systems. ACS<br>Nano, 2021, 15, 6276-6288.                                                                                                                                                           | 7.3 | 11        |
| 561 | THEORETICAL STUDIES OF OXYGEN BINDING. Annals of the New York Academy of Sciences, 1981, 367, 419-433.                                                                                                                                                                                | 1.8 | 10        |
| 562 | The structure–activity relationships of methane mono-oxygenase mimics in alkane activation.<br>Catalysis Today, 2003, 81, 263-286.                                                                                                                                                    | 2.2 | 10        |
| 563 | The symmetric group and the spin generalized scf method. International Journal of Quantum<br>Chemistry, 1969, 4, 593-600.                                                                                                                                                             | 1.0 | 10        |
| 564 | Formation of the –N(NO)N(NO)– polymer at high pressure and stabilization at ambient conditions.<br>Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5321-5325.                                                                             | 3.3 | 10        |
| 565 | First principles-based multiparadigm, multiscale strategy for simulating complex materials processes with applications to amorphous SiC films. Journal of Chemical Physics, 2015, 142, 174703.                                                                                        | 1.2 | 10        |
| 566 | Computational Design of a Pincer Phosphinito Vanadium ((OPO)V) Propane Monoxygenation<br>Homogeneous Catalyst Based on the Reduction-Coupled Oxo Activation (ROA) Mechanism. ACS<br>Catalysis, 2017, 7, 356-364.                                                                      | 5.5 | 10        |
| 567 | Inertial dynamics of an interface with interfacial mass flux: Stability and flow fields' structure,<br>inertial stabilization mechanism, degeneracy of Landau's solution, effect of energy fluctuations, and<br>chemistry-induced instabilities. Physics of Fluids, 2020, 32, 082105. | 1.6 | 10        |
| 568 | Enhancing the Detonation Properties of Liquid Nitromethane by Adding Nitro-Rich Molecule Nitryl<br>Cyanide. Journal of Physical Chemistry C, 2020, 124, 9787-9794.                                                                                                                    | 1.5 | 10        |
| 569 | Diverse Phases of Carbonaceous Materials from Stochastic Simulations. ACS Nano, 2021, 15, 6369-6385.                                                                                                                                                                                  | 7.3 | 10        |
| 570 | Intramolecular Hydrogen Bonding in Disubstituted Ethanes:Â General Considerations and<br>Methodology in Quantum Mechanical Calculations of the Conformational Equilibria of Succinamate<br>Monoanion. Journal of Physical Chemistry A, 2005, 109, 9083-9088.                          | 1.1 | 9         |
| 571 | Selectivity and specificity of substrate binding in methionyl-tRNA synthetase. Protein Science, 2009, 13, 2693-2705.                                                                                                                                                                  | 3.1 | 9         |
| 572 | Carbonâ^'Oxygen Bond Forming Mechanisms in Rhenium Oxo-Alkyl Complexes. Organometallics, 2010,<br>29, 2026-2033.                                                                                                                                                                      | 1.1 | 9         |
| 573 | First-Principles-Based Multiscale, Multiparadigm Molecular Mechanics and Dynamics Methods for Describing Complex Chemical Processes. Topics in Current Chemistry, 2011, 307, 1-42.                                                                                                    | 4.0 | 9         |
| 574 | Thermodynamics of <i>d</i> -dimensional hard sphere fluids confined to micropores. Journal of Chemical Physics, 2011, 134, 114502.                                                                                                                                                    | 1.2 | 9         |
| 575 | The para-substituent effect and pH-dependence of the organometallic Baeyer–Villiger oxidation of rhenium–carbon bonds. Dalton Transactions, 2012, 41, 3758.                                                                                                                           | 1.6 | 9         |
| 576 | Large-scale Molecular Simulations of Hypervelocity Impact of Materials. Procedia Engineering, 2013, 58, 167-176.                                                                                                                                                                      | 1.2 | 9         |

| #   | Article                                                                                                                                                                                                                                                                                                                     | IF    | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 577 | Deformation Induced Solid–Solid Phase Transitions in Gamma Boron. Chemistry of Materials, 2014, 26,<br>4289-4298.                                                                                                                                                                                                           | 3.2   | 9         |
| 578 | Quantum Mechanical and Experimental Validation that Cyclobis(paraquatâ€ <i>p</i> â€phenylene) Forms a<br>1:1 Inclusion Complex with Tetrathiafulvalene. Chemistry - A European Journal, 2016, 22, 2736-2745.                                                                                                                | 1.7   | 9         |
| 579 | Polarizable Charge Equilibration Model for Transition-Metal Elements. Journal of Physical Chemistry<br>A, 2018, 122, 9350-9358.                                                                                                                                                                                             | 1.1   | 9         |
| 580 | Free Energy Landscape of Sodium Solvation into Graphite. Journal of Physical Chemistry C, 2018, 122, 20064-20072.                                                                                                                                                                                                           | 1.5   | 9         |
| 581 | Li-diffusion at the interface between Li-metal and [Pyr14][TFSI]-ionic liquid: <i>Ab initio</i> molecular dynamics simulations. Journal of Chemical Physics, 2020, 152, 031101.                                                                                                                                             | 1.2   | 9         |
| 582 | Mechanistic Studies of Styrene Production from Benzene and Ethylene Using<br>[(η <sup>2</sup> -C <sub>2</sub> H <sub>4</sub> ) <sub>2</sub> Rh(μ-OAc)] <sub>2</sub> as Catalyst<br>Precursor: Identification of a Bis-Rh <sup>I</sup> Mono-Cu <sup>II</sup> Complex As the Catalyst. ACS<br>Catalysis, 2021, 11, 5688-5702. | 5.5   | 9         |
| 583 | Manganese Catalyzed Partial Oxidation of Light Alkanes. ACS Catalysis, 2022, 12, 5356-5370.                                                                                                                                                                                                                                 | 5.5   | 9         |
| 584 | Sodium Diffusion through Aluminum-Doped Zeolite BEA System: Effect of Water Solvation. Journal of Physical Chemistry C, 2009, 113, 819-826.                                                                                                                                                                                 | 1.5   | 8         |
| 585 | Hedgehog proteins create a dynamic cholesterol interface. PLoS ONE, 2021, 16, e0246814.                                                                                                                                                                                                                                     | 1.1   | 8         |
| 586 | Synergic Effects in the Activation of the Sweet Receptor GPCR Heterodimer for Various Sweeteners<br>Predicted Using Molecular Metadynamics Simulations. Journal of Agricultural and Food Chemistry,<br>2021, 69, 12250-12261.                                                                                               | 2.4   | 8         |
| 587 | Immobilization of "Capping Arene―Cobalt(II) Complexes on Ordered Mesoporous Carbon for<br>Electrocatalytic Water Oxidation. ACS Catalysis, 2021, 11, 15068-15082.                                                                                                                                                           | 5.5   | 8         |
| 588 | The valence bond Aufbau principle for molecular excited states. Chemical Physics Letters, 1972, 16, 157-163.                                                                                                                                                                                                                | 1.2   | 7         |
| 589 | Kinks in the a/2ã€^111〉 screw dislocation in Ta. Journal of Computer-Aided Materials Design, 2001, 8, 117-12                                                                                                                                                                                                                | 5.0.7 | 7         |
| 590 | The mechanism for catalytic hydrosilylation by bis(imino)pyridine iron olefin complexes supported by broken symmetry density functional theory. Dalton Transactions, 2017, 46, 12507-12515.                                                                                                                                 | 1.6   | 7         |
| 591 | First principles-based multiscale atomistic methods for input into first principles nonequilibrium<br>transport across interfaces. Proceedings of the National Academy of Sciences of the United States of<br>America, 2019, 116, 18193-18201.                                                                              | 3.3   | 7         |
| 592 | Anomalies in Supercooled Water at â^1⁄4230 K Arise from a 1D Polymer to 2D Network Topological<br>Transformation. Journal of Physical Chemistry Letters, 2019, 10, 6267-6273.                                                                                                                                               | 2.1   | 7         |
| 593 | Crack propagation in a Tantalum nano-slab. Journal of Computer-Aided Materials Design, 2001, 8, 151-159.                                                                                                                                                                                                                    | 0.7   | 6         |
| 594 | The Computational Materials Design Facility (CMDF): A powerful framework for multi-paradigm multi-scale simulations. Materials Research Society Symposia Proceedings, 2005, 894, 1.                                                                                                                                         | 0.1   | 6         |

| #   | Article                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 595 | Rigidityâ^'Stability Relationship in Interlocked Model Complexes Containing Phenylene-Ethynylene-Based<br>Disubstituted Naphthalene and Benzene. Crystal Growth and Design, 2009, 9, 2300-2309.                                                                                   | 1.4 | 6         |
| 596 | Surface and Electronic Properties of Hydrogen Terminated Si [001] Nanowires. Journal of Physical Chemistry C, 2011, 115, 12586-12591.                                                                                                                                             | 1.5 | 6         |
| 597 | Predicted Ligands for the Human Urotensinâ€II G Proteinâ€Coupled Receptor with Some Experimental<br>Validation. ChemMedChem, 2014, 9, 1732-1743.                                                                                                                                  | 1.6 | 6         |
| 598 | The relation of mechanical properties and local structures in bulk Mg 54 (Cu 1â^ x Ag x ) 35 Y 11 metallic glasses: Ab initio molecular dynamics simulations. Computational Materials Science, 2014, 92, 313-317.                                                                 | 1.4 | 6         |
| 599 | Stability of NNO and NPO Nanotube Crystals. Journal of Physical Chemistry Letters, 2014, 5, 485-489.                                                                                                                                                                              | 2.1 | 6         |
| 600 | The PX Motif of DNA Binds Specifically to <i>Escherichia coli</i> DNA Polymerase I. Biochemistry, 2019, 58, 575-581.                                                                                                                                                              | 1.2 | 6         |
| 601 | Discovery of Dramatically Improved Ammonia Synthesis Catalysts through Hierarchical<br>High-Throughput Catalyst Screening of the Fe(211) Surface. Chemistry of Materials, 2020, 32, 9914-9924.                                                                                    | 3.2 | 6         |
| 602 | Reduction of N <sub>2</sub> to Ammonia by Phosphate Molten Salt and Li Electrode: Proof of Concept<br>Using Quantum Mechanics. Journal of Physical Chemistry Letters, 2021, 12, 1696-1701.                                                                                        | 2.1 | 6         |
| 603 | Operando Electrochemical Spectroscopy for CO on Cu(100) at pH 1 to 13: Validation of Grand Canonical Potential Predictions. ACS Catalysis, 2021, 11, 3173-3181.                                                                                                                   | 5.5 | 6         |
| 604 | Predicted Structure of Fully Activated Tas1R3/1R3′ Homodimer Bound to G Protein and Natural Sugars:<br>Structural Insights into G Protein Activation by a Class C Sweet Taste Homodimer with Natural<br>Sugars. Journal of the American Chemical Society, 2021, 143, 16824-16838. | 6.6 | 6         |
| 605 | Biased β-Agonists Favoring Gs over β-Arrestin for Individualized Treatment of Obstructive Lung Disease.<br>Journal of Personalized Medicine, 2022, 12, 331.                                                                                                                       | 1.1 | 6         |
| 606 | Coupling of Raman Radial Breathing Modes in Double-Wall Carbon Nanotubes and Bundles of<br>Nanotubes. Journal of Physical Chemistry B, 2009, 113, 7199-7204.                                                                                                                      | 1.2 | 5         |
| 607 | Homology modeling and molecular docking studies of Drosophila and Aedes sex peptide receptors.<br>Journal of Molecular Graphics and Modelling, 2016, 66, 115-122.                                                                                                                 | 1.3 | 5         |
| 608 | Discovery of Novel Biased Opioid Receptor Ligands through Structureâ€Based Pharmacophore Virtual<br>Screening and Experiment. ChemMedChem, 2019, 14, 1783-1794.                                                                                                                   | 1.6 | 5         |
| 609 | Scalable Reactive Molecular Dynamics Simulations for Computational Synthesis. Computing in Science and Engineering, 2019, 21, 64-75.                                                                                                                                              | 1.2 | 5         |
| 610 | Entropic Stabilization of Water at Graphitic Interfaces. Journal of Physical Chemistry Letters, 2021, 12, 9162-9168.                                                                                                                                                              | 2.1 | 5         |
| 611 | THEORETICAL STUDIES OF THE BONDING OF O2 TO HEMOGLOBIN; IMPLICATIONS FOR COOPERATIVITY. , 1979, , 87-123.                                                                                                                                                                         |     | 4         |
| 612 | Formation of water at a Pt(111) surface: A study using the reactive force field (ReaxFF). Materials<br>Research Society Symposia Proceedings, 2005, 900, 1.                                                                                                                       | 0.1 | 4         |

| #   | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 613 | Molecular Modeling of Carbohydrates with No Charges, No Hydrogen Bonds, and No Atoms. ACS<br>Symposium Series, 2006, , 271-284.                                                                                                                | 0.5 | 4         |
| 614 | The Predicted Binding Site and Dynamics of Peptide Inhibitors to the Methuselah GPCR from Drosophila melanogaster. Biochemistry, 2008, 47, 12740-12749.                                                                                        | 1.2 | 4         |
| 615 | Group Vibrational Mode Assignments as a Broadly Applicable Tool for Characterizing Ionomer<br>Membrane Structure as a Function of Degree of Hydration. Chemistry of Materials, 2020, 32, 1828-1843.                                            | 3.2 | 4         |
| 616 | Reaction Mechanism Underlying Pd(II)-Catalyzed Oxidative Coupling of Ethylene and Benzene to Form<br>Styrene: Identification of a Cyclic Mono-Pd <sup>II</sup> Bis-Cu <sup>II</sup> Complex as the Active<br>Catalyst. Organometallics, 0, , . | 1.1 | 4         |
| 617 | Threshold crack speed in dynamic fracture of silicon. Materials Research Society Symposia<br>Proceedings, 2006, 978, .                                                                                                                         | 0.1 | 3         |
| 618 | The optimum orbitals for the H2 + D⇋H + HD exchange reaction. International Journal of Quantum<br>Chemistry, 1969, 3, 63-66.                                                                                                                   | 1.0 | 3         |
| 619 | Direct atomistic simulation of brittle-to-ductile transition in silicon single crystals. Materials<br>Research Society Symposia Proceedings, 2010, 1272, 1.                                                                                    | 0.1 | 3         |
| 620 | Transport properties of imidazolium based ionic liquid electrolytes from molecular dynamics simulations. Electrochemical Science Advances, 0, , e2100007.                                                                                      | 1.2 | 3         |
| 621 | Focus on the deformation mechanism at the interfacial layer in nano-reinforced polymers: A<br>molecular dynamics study of silica - poly(methyl methacrylate) nano-composite. Mechanics of<br>Materials, 2021, 159, 103903.                     | 1.7 | 3         |
| 622 | Development of the ReaxFF Reactive Force Field for Cu/Si Systems with Application to Copper Cluster<br>Formation during Cu Diffusion Inside Silicon. Journal of Physical Chemistry C, 2021, 125, 19455-19466.                                  | 1.5 | 3         |
| 623 | Structure, Energetics, and Spectra for the Oxygen Vacancy in Rutile: Prominence of the<br>Ti–H <sub>O</sub> –Ti Bond. Journal of Physical Chemistry Letters, 2021, 12, 10175-10181.                                                            | 2.1 | 3         |
| 624 | Reaction Mechanism and Energetics of Decomposition of<br>Tetrakis(1,3-dimethyltetrazol-5-imidoperchloratomanganese(II)) from Quantum-Mechanics-based<br>Reactive Dynamics. Journal of the American Chemical Society, 2021, 143, 16960-16975.   | 6.6 | 3         |
| 625 | Order-Tuned Deformability of Bismuth Telluride Semiconductors: An Energy-Dissipation Strategy for<br>Large Fracture Strain. ACS Applied Materials & Interfaces, 2021, 13, 57629-57637.                                                         | 4.0 | 3         |
| 626 | Complete inhibition of a polyol nucleation by a micromolar biopolymer additive. Cell Reports Physical Science, 2022, 3, 100723.                                                                                                                | 2.8 | 3         |
| 627 | Recent Advances in Simulation of Dendritic Polymers. Materials Research Society Symposia<br>Proceedings, 1998, 543, 299.                                                                                                                       | 0.1 | 2         |
| 628 | Molecular Dynamics Simulations of Supercooled Liquid Metals and Glasses. Materials Research<br>Society Symposia Proceedings, 2000, 644, 231.                                                                                                   | 0.1 | 2         |
| 629 | MPiSIM: Massively parallel simulation tool for metallic system. Journal of Computer-Aided Materials Design, 2001, 8, 185-192.                                                                                                                  | 0.7 | 2         |
| 630 | London Dispersion Corrections to Density Functional Theory for Transition Metals Based on Fitting<br>to Experimental Temperature-Programmed Desorption of Benzene Monolayers. Journal of Physical<br>Chemistry Letters, 2021, 12, 73-79.       | 2.1 | 2         |

| #   | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 631 | Experimental and Theoretical Comparison of Potential-dependent Methylation on Chemically<br>Exfoliated WS <sub>2</sub> and MoS <sub>2</sub> . ACS Applied Materials & Interfaces, 2022, 14,<br>9744-9753.                                                    | 4.0 | 2         |
| 632 | SINGLET MOLECULAR OXYGEN CHEMISTRY AND IMPLICATIONS FOR FLAVIN-COFACTOR HYDROXYLATIONS. , 1979, , 513-555.                                                                                                                                                   |     | 1         |
| 633 | First principles multiscale modeling of physico-chemical aspects of tribology. Tribology Series, 2001, ,<br>15-33.                                                                                                                                           | 0.1 | 1         |
| 634 | Multi-paradigm multi-scale modeling of dynamical crack propagation in silicon using the ReaxFF reactive force field. Materials Research Society Symposia Proceedings, 2005, 904, 1.                                                                          | 0.1 | 1         |
| 635 | Quantization of crack speeds in dynamic fracture of silicon: Multiparadigm ReaxFF modeling.<br>Materials Research Society Symposia Proceedings, 2006, 910, 7.                                                                                                | 0.1 | 1         |
| 636 | Prediction of the Size Distributions of Methanolâ^'Ethanol Clusters Detected in VUV<br>Laser/Time-of-Flight Mass Spectrometry. Journal of Physical Chemistry A, 2009, 113, 6865-6875.                                                                        | 1.1 | 1         |
| 637 | New Quantum Mechanics Based Methods for Multiscale Simulations with Applications to Reaction Mechanisms for Electrocatalysis. Topics in Catalysis, 2020, 63, 1658-1666.                                                                                      | 1.3 | 1         |
| 638 | Electrochemical Performance and Structures of Chromium and Molybdenum-Doped<br>ε-Li <sub><i>x</i></sub> VOPO <sub>4</sub> Predicted as Promising Cathodes for Next Generation<br>Lithium-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 275-282. | 1.5 | 1         |
| 639 | Deformation and Failure Mechanisms of Thermoelectric Type-I Clathrate<br>Ba <sub>8</sub> Au <sub>6</sub> Ge <sub>40</sub> . ACS Applied Materials & Interfaces, 2022, 14,<br>4326-4334.                                                                      | 4.0 | 1         |
| 640 | Application of lightweight threading techniques to computational chemistry. Journal of Computer-Aided Materials Design, 2001, 8, 173-184.                                                                                                                    | 0.7 | 0         |
| 641 | Multiscale Multiparadigm in Silico Design of New Materials for Li-ion Batteries. ECS Meeting Abstracts, 2012, , .                                                                                                                                            | 0.0 | 0         |
| 642 | Lithium Dendrite Inhibition on Post-Charge Anode Surface: The Kinetics Role. Materials Research<br>Society Symposia Proceedings, 2015, 1774, 31-39.                                                                                                          | 0.1 | 0         |
| 643 | Quantum mechanics based mechanisms for selective activation of hydrocarbons by mixed metal oxide heterogeneous catalysts – A tribute to Robert Grasselli. Catalysis Today, 2021, 363, 3-9.                                                                   | 2.2 | 0         |
| 644 | Atomic and Molecular Unit Energy Conversion Catalysis of Carbon Dioxides in Value-Added Chemical<br>Fuels. Springer Series in Materials Science, 2021, , 743-766.                                                                                            | 0.4 | 0         |
| 645 | Reactive scattering of water group ions on ice surfaces with relevance to Saturn's icy moons. Icarus, 2022, 379, 114967.                                                                                                                                     | 1.1 | 0         |
| 646 | A Perspective of Materials Modeling. , 2005, , 2707-2711.                                                                                                                                                                                                    |     | 0         |
| 647 | 5HTR1E receptor interacts with Neurotrophic factorâ€î±1 and serotonin to activate two distinct signaling pathways. FASEB Journal, 2022, 36, .                                                                                                                | 0.2 | 0         |