
J Boone Kauffman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10626996/publications.pdf Version: 2024-02-01

L ROONE KALLEEMAN

#	Article	IF	CITATIONS
1	Contributions of mangrove conservation and restoration to climate change mitigation in Indonesia. Global Change Biology, 2022, 28, 4523-4538.	9.5	21
2	Carbon Stocks from Peat Swamp Forest and Oil Palm Plantation in Central Kalimantan, Indonesia. Springer Climate, 2021, , 203-227.	0.6	9
3	Future carbon emissions from global mangrove forest loss. Global Change Biology, 2021, 27, 2856-2866.	9.5	93
4	Ecosystem carbon losses following a climate-induced mangrove mortality in Brazil. Journal of Environmental Management, 2021, 297, 113381.	7.8	21
5	Land Cover and Land Use Change Decreases Net Ecosystem Production in Tropical Peatlands of West Kalimantan, Indonesia. Forests, 2021, 12, 1587.	2.1	5
6	Total ecosystem carbon stocks at the marineâ€ŧerrestrial interface: Blue carbon of the Pacific Northwest Coast, United States. Global Change Biology, 2020, 26, 5679-5692.	9.5	35
7	Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecological Monographs, 2020, 90, e01405.	5.4	139
8	Land use impacts on benthic bioturbation potential and carbon burial in Brazilian mangrove ecosystems. Limnology and Oceanography, 2020, 65, 2366-2376.	3.1	20
9	Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. Forest Ecology and Management, 2019, 432, 17-29.	3.2	76
10	The undervalued contribution of mangrove protection in Mexico to carbon emission targets. Conservation Letters, 2018, 11, e12445.	5.7	50
11	And details for landâ€use carbon footprints arise from quantitative and replicated studies. Frontiers in Ecology and the Environment, 2018, 16, 12-13.	4.0	10
12	Carbon stocks of mangroves and salt marshes of the Amazon region, Brazil. Biology Letters, 2018, 14, 20180208.	2.3	62
13	Shrimp ponds lead to massive loss of soil carbon and greenhouse gas emissions in northeastern Brazilian mangroves. Ecology and Evolution, 2018, 8, 5530-5540.	1.9	92
14	Limits on carbon sequestration in arid blue carbon ecosystems. Ecological Applications, 2017, 27, 859-874.	3.8	147
15	The jumbo carbon footprint of a shrimp: carbon losses from mangrove deforestation. Frontiers in Ecology and the Environment, 2017, 15, 183-188.	4.0	97
16	Ecosystem carbon stocks of mangroves across broad environmental gradients in West-Central Africa: Global and regional comparisons. PLoS ONE, 2017, 12, e0187749.	2.5	78
17	Ecosystem carbon stocks of mangrove forests along the Pacific and Caribbean coasts of Honduras. Wetlands Ecology and Management, 2016, 24, 187-201.	1.5	62
18	Effects of nesting waterbirds on nutrient levels in mangroves, Gulf of Fonseca, Honduras. Wetlands Ecology and Management, 2016, 24, 217-229.	1.5	21

J BOONE KAUFFMAN

#	Article	IF	CITATIONS
19	Carbon stocks of mangroves and losses arising from their conversion to cattle pastures in the Pantanos de Centla, Mexico. Wetlands Ecology and Management, 2016, 24, 203-216.	1.5	82
20	The potential of Indonesian mangrove forests for global climate change mitigation. Nature Climate Change, 2015, 5, 1089-1092.	18.8	495
21	Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecological Applications, 2014, 24, 518-527.	3.8	194
22	Climate change mitigation strategies should include tropical wetlands. Carbon Management, 2013, 4, 491-499.	2.4	25
23	Carbon Stocks of Tropical Coastal Wetlands within the Karstic Landscape of the Mexican Caribbean. PLoS ONE, 2013, 8, e56569.	2.5	227
24	Estimating Global "Blue Carbon―Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLoS ONE, 2012, 7, e43542.	2.5	1,082
25	Peatlands in the Earth's 21st century climate system. Environmental Reviews, 2011, 19, 371-396.	4.5	323
26	Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 2011, 4, 293-297.	12.9	1,950
27	Ecosystem Carbon Stocks of Micronesian Mangrove Forests. Wetlands, 2011, 31, 343-352.	1.5	301
28	Micronesian Mangrove Forest Structure and Tree Responses to a Severe Typhoon. Wetlands, 2010, 30, 1077-1084.	1.5	93
29	Carbon pool and biomass dynamics associated with deforestation, land use, and agricultural abandonment in the neotropics. Ecological Applications, 2009, 19, 1211-1222.	3.8	87
30	Structural dynamics of riparian forests along a black cottonwood successional gradient. Forest Ecology and Management, 2005, 215, 149-162.	3.2	45
31	Postfire Management on Forested Public Lands of the Western United States. Conservation Biology, 2004, 18, 957-967.	4.7	197
32	MODELING BIOMASS BURNING EMISSIONS FOR AMAZON FOREST AND PASTURES IN RONDOÌ,NIA, BRAZIL. , 2004, 14, 232-246.		20
33	Biomass, Carbon, and Nitrogen Pools in Mexican Tropical Dry Forest Landscapes. Ecosystems, 2003, 6, 609-629.	3.4	174
34	Root biomass and carbon in a tropical evergreen forest of Mexico: changes with secondary succession and forest conversion to pasture. Journal of Tropical Ecology, 2003, 19, 457-464.	1.1	47
35	Aboveground biomass and structure of rainforests in the southwestern Brazilian Amazon. Forest Ecology and Management, 2002, 163, 293-307.	3.2	79
36	Dynamics of Aboveground and Soil Carbon and Nitrogen Stocks and Cycling of Available Nitrogen along a Land-use Gradient in Rondônia, Brazil. Ecosystems, 2002, 5, 244-259.	3.4	56

#	Article	IF	CITATIONS
37	Range Ecology, Global Livestock Influences. , 2001, , 330-344.		4
38	Range Ecology, Global Livestock Influences. , 2001, , 33-52.		12
39	ECOSYSTEM-SCALE IMPACTS OF DEFORESTATION AND LAND USE IN A HUMID TROPICAL REGION OF MEXICO. , 2000, 10, 515-527.		130
40	Biomass, Carbon, and Nutrient Dynamics of Secondary Forests in a Humid Tropical Region of Mexico. Ecology, 1999, 80, 1892.	3.2	22
41	BIOMASS, CARBON, AND NUTRIENT DYNAMICS OF SECONDARY FORESTS IN A HUMID TROPICAL REGION OF MÉXICO. Ecology, 1999, 80, 1892-1907.	3.2	253
42	Fire in the Brazilian Amazon 2. Biomass, nutrient pools and losses in cattle pastures. Oecologia, 1998, 113, 415-427.	2.0	138
43	Dynamics associated with total aboveground biomass, C, nutrient pools, and biomass burning of primary forest and pasture in Rondônia, Brazil during SCAR-B. Journal of Geophysical Research, 1998, 103, 32091-32100.	3.3	74
44	Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. Journal of Tropical Ecology, 1998, 14, 263-283.	1.1	252
45	An Ecological Perspective of Riparian and Stream Restoration in the Western United States. Fisheries, 1997, 22, 12-24.	0.8	307
46	Fire in the Brazilian Amazon: 1. Biomass, nutrient pools, and losses in slashed primary forests. Oecologia, 1995, 104, 397-408.	2.0	284
47	Relationships of Fire, Biomass and Nutrient Dynamics along a Vegetation Gradient in the Brazilian Cerrado. Journal of Ecology, 1994, 82, 519.	4.0	263
48	Biomass and Nutrient Dynamics Associated with Slash Fires in Neotropical Dry Forests. Ecology, 1993, 74, 140-151.	3.2	180
49	Biogeochemistry of Deforestation and Biomass Burning. ACS Symposium Series, 1992, , 426-456.	0.5	13
50	Deforestation, Fire Susceptibility, and Potential Tree Responses to Fire in the Eastern Amazon. Ecology, 1990, 71, 437-449.	3.2	581
51	Fire in the Venezuelan Amazon 1: Fuel Biomass and Fire Chemistry in the Evergreen Rainforest of Venezuela. Oikos, 1988, 53, 167.	2.7	94
52	Fire in the Venezuelan Amazon 2: Environmental Conditions Necessary for Forest Fires in the Evergreen Rainforest of Venezuela. Oikos, 1988, 53, 176.	2.7	128