Eric T Hoke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10625658/publications.pdf Version: 2024-02-01

FRIC T HOVE

#	Article	IF	CITATIONS
1	Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chemical Science, 2015, 6, 613-617.	3.7	1,682
2	A Layered Hybrid Perovskite Solar ell Absorber with Enhanced Moisture Stability. Angewandte Chemie - International Edition, 2014, 53, 11232-11235.	7.2	1,547
3	Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 746-751.	2.1	966
4	Efficient charge generation by relaxed charge-transfer states at organic interfaces. Nature Materials, 2014, 13, 63-68.	13.3	667
5	Self-Assembly of Broadband White-Light Emitters. Journal of the American Chemical Society, 2014, 136, 1718-1721.	6.6	642
6	Accounting for Interference, Scattering, and Electrode Absorption to Make Accurate Internal Quantum Efficiency Measurements in Organic and Other Thin Solar Cells. Advanced Materials, 2010, 22, 3293-3297.	11.1	627
7	A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Applied Physics Letters, 2015, 106, .	1.5	488
8	Increased light harvesting in dye-sensitized solar cells with energy relay dyes. Nature Photonics, 2009, 3, 406-411.	15.6	430
9	The Importance of Fullerene Percolation in the Mixed Regions of Polymer–Fullerene Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2013, 3, 364-374.	10.2	412
10	Chloride in Lead Chloride-Derived Organo-Metal Halides for Perovskite-Absorber Solar Cells. Chemistry of Materials, 2014, 26, 7158-7165.	3.2	256
11	The Mechanism of Burnâ€in Loss in a High Efficiency Polymer Solar Cell. Advanced Materials, 2012, 24, 663-668.	11.1	229
12	Mapping Electric Fieldâ€Induced Switchable Poling and Structural Degradation in Hybrid Lead Halide Perovskite Thin Films. Advanced Energy Materials, 2015, 5, 1500962.	10.2	225
13	Recombination in Polymer:Fullerene Solar Cells with Open ircuit Voltages Approaching and Exceeding 1.0 V. Advanced Energy Materials, 2013, 3, 220-230.	10.2	212
14	Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivatives. Journal of the American Chemical Society, 2012, 134, 5222-5232.	6.6	187
15	Morphologyâ€Dependent Trap Formation in High Performance Polymer Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2011, 1, 954-962.	10.2	183
16	Molecular Packing and Solar Cell Performance in Blends of Polymers with a Bisadduct Fullerene. Nano Letters, 2012, 12, 1566-1570.	4.5	140
17	Incomplete Exciton Harvesting from Fullerenes in Bulk Heterojunction Solar Cells. Nano Letters, 2009, 9, 4037-4041.	4.5	139
18	The Role of Electron Affinity in Determining Whether Fullerenes Catalyze or Inhibit Photooxidation of Polymers for Solar Cells. Advanced Energy Materials, 2012, 2, 1351-1357.	10.2	134

Eric T Hoke

#	Article	IF	CITATIONS
19	Ring Substituents Mediate the Morphology of PBDTTPD-PCBM Bulk-Heterojunction Solar Cells. Chemistry of Materials, 2014, 26, 2299-2306.	3.2	119
20	Effect of Al ₂ O ₃ Recombination Barrier Layers Deposited by Atomic Layer Deposition in Solid-State CdS Quantum Dot-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 5584-5592.	1.5	108
21	Improving the long-term stability of PBDTTPD polymer solar cells through material purification aimed at removing organic impurities. Energy and Environmental Science, 2013, 6, 2529.	15.6	98
22	High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells. Nano Letters, 2010, 10, 3077-3083.	4.5	97
23	Reâ€evaluating the Role of Sterics and Electronic Coupling in Determining the Openâ€Circuit Voltage of Organic Solar Cells. Advanced Materials, 2013, 25, 6076-6082.	11.1	90
24	Comparing the Device Physics and Morphology of Polymer Solar Cells Employing Fullerenes and Nonâ€Fullerene Acceptors. Advanced Energy Materials, 2014, 4, 1301426.	10.2	90
25	3,4-Disubstituted Polyalkylthiophenes for High-Performance Thin-Film Transistors and Photovoltaics. Journal of the American Chemical Society, 2011, 133, 16722-16725.	6.6	67
26	Incorporating Multiple Energy Relay Dyes in Liquid Dyeâ€ S ensitized Solar Cells. ChemPhysChem, 2011, 12, 657-661.	1.0	51
27	Free Carrier Generation in Fullerene Acceptors and Its Effect on Polymer Photovoltaics. Journal of Physical Chemistry C, 2012, 116, 26674-26678.	1.5	50
28	Phosphorescent energy relay dye for improved light harvesting response in liquid dye-sensitized solar cells. Energy and Environmental Science, 2010, 3, 434.	15.6	44
29	Impact of Molecular Orientation and Spontaneous Interfacial Mixing on the Performance of Organic Solar Cells. Chemistry of Materials, 2015, 27, 5597-5604.	3.2	40
30	The importance of dye chemistry and TiCl4 surface treatment in the behavior of Al2O3 recombination barrier layers deposited by atomic layer deposition in solid-state dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 12130.	1.3	37
31	Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells. Optics Express, 2010, 18, 3893.	1.7	28
32	Parasitic Absorption and Internal Quantum Efficiency Measurements of Solid‣tate Dye Sensitized Solar Cells. Advanced Energy Materials, 2013, 3, 959-966.	10.2	26
33	Transient Response of Organo-Metal-Halide Solar Cells Analyzed by Time-Resolved Current-Voltage Measurements. Photonics, 2015, 2, 1101-1115.	0.9	14
34	Optical loss analysis of monolithic perovskite/Si tandem solar cell. , 2015, , .		4
35	Fully inorganic cesium lead halide perovskites with improved stability for tandem solar cells. , 2016, , .		4
36	Solar Cells: Reâ€evaluating the Role of Sterics and Electronic Coupling in Determining the Openâ€Circuit Voltage of Organic Solar Cells (Adv. Mater. 42/2013). Advanced Materials, 2013, 25, 5990-5990.	11.1	1