Chandra Turpen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10625380/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analyzing a faculty online learning community as a mechanism for supporting faculty implementation of a guided-inquiry curriculum. International Journal of STEM Education, 2021, 8, 17.	5.0	13
2	The Taxonomy of Opportunities to Learn (TxOTL): a tool for understanding the learning potential and substance of interactions in faculty (online) learning community meetings. International Journal of STEM Education, 2021, 8, 45.	5.0	3
3	Narrative Co-construction of Stances Towards Engineers' Work in Socio-Technical Contexts. Advances in STEM Education, 2019, , 251-272.	0.5	3
4	Bridging the gaps: How students seek disciplinary coherence in introductory physics for life science. Physical Review Physics Education Research, 2019, 15, .	2.9	12
5	Why Ideology Matters for Learning: A Case of Ideological Convergence in an Engineering Ethics Classroom Discussion on Drone Warfare. Journal of the Learning Sciences, 2018, 27, 183-223.	2.9	51
6	Sources of student engagement in Introductory Physics for Life Sciences. Physical Review Physics Education Research, 2018, 14, .	2.9	21
7	Pedagogical sensemaking or "doing school― In well-designed workshop sessions, facilitation makes the difference. Physical Review Physics Education Research, 2017, 13, .	2.9	3
8	How faculty learn about and implement research-based instructional strategies: The case of Peer Instruction. Physical Review Physics Education Research, 2016, 12, .	2.9	72
9	Perceived affordances and constraints regarding instructors' use of Peer Instruction: Implications for promoting instructional change. Physical Review Physics Education Research, 2016, 12, .	2.9	39
10	Leveraging a relationship with biology to expand a relationship with physics. Physical Review Physics Education Research, 2016, 12, .	2.9	20
11	Assessing the interactivity and prescriptiveness of faculty professional development workshops: The real-time professional development observation tool. Physical Review Physics Education Research, 2016, 12, .	2.9	10
12	Ontological metaphors for negative energy in an interdisciplinary context. Physical Review Physics Education Research, 2014, 10, .	1.7	20
13	Students' reasoning about "high-energy bonds―and ATP: A vision of interdisciplinary education. Physical Review Physics Education Research, 2014, 10, .	1.7	17
14	Assessment of teaching effectiveness: Lack of alignment between instructors, institutions, and research recommendations. Physical Review Physics Education Research, 2014, 10, .	1.7	23
15	Entropy and spontaneity in an introductory physics course for life science students. American Journal of Physics, 2014, 82, 394-402.	0.7	27
16	Chemical energy in an introductory physics course for the life sciences. American Journal of Physics, 2014, 82, 403-411.	0.7	32
17	The role physics can play in a multi-disciplinary curriculum for non-physics scientists and engineers. European Journal of Science and Mathematics Education, 2014, 2, 1-13.	1.1	2

18 Students' reasoning about interdisciplinarity. , 2013, , .

#	Article	IF	CITATIONS
19	Students' interdisciplinary reasoning about "high-energy bonds" and ATP. AIP Conference Proceedings, 2013, , .	0.4	10
20	Examining the positioning of ideas in the disciplines. , 2013, , .		0
21	A Framework for Analyzing Interdisciplinary Tasks: Implications for Student Learning and Curricular Design. CBE Life Sciences Education, 2013, 12, 187-205.	2.3	56