Tiina M Kauppinen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1062412/publications.pdf

Version: 2024-02-01

42 papers

6,369 citations

147801 31 h-index 276875 41 g-index

42 all docs 42 docs citations

42 times ranked

8191 citing authors

#	Article	IF	CITATIONS
1	A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 13496-13500.	7.1	984
2	Minocycline, a Tetracycline Derivative, Is Neuroprotective against Excitotoxicity by Inhibiting Activation and Proliferation of Microglia. Journal of Neuroscience, 2001, 21, 2580-2588.	3.6	885
3	NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nature Neuroscience, 2009, 12, 857-863.	14.8	466
4	Astrocyte Influences on Ischemic Neuronal Death. Current Molecular Medicine, 2004, 4, 193-205.	1.3	399
5	NAD ⁺ Depletion Is Necessary and Sufficient forPoly(ADP-Ribose) Polymerase-1-Mediated Neuronal Death. Journal of Neuroscience, 2010, 30, 2967-2978.	3.6	391
6	Microglial Activation in Stroke: Therapeutic Targets. Neurotherapeutics, 2010, 7, 378-391.	4.4	328
7	Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) Deficiency Attenuates Phagocytic Activities of Microglia and Exacerbates Ischemic Damage in Experimental Stroke. Journal of Neuroscience, 2015, 35, 3384-3396.	3.6	277
8	Minocycline inhibits poly(ADP-ribose) polymerase-1 at nanomolar concentrations. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9685-9690.	7.1	225
9	CX3CR1 Protein Signaling Modulates Microglial Activation and Protects against Plaque-independent Cognitive Deficits in a Mouse Model of Alzheimer Disease. Journal of Biological Chemistry, 2011, 286, 32713-32722.	3.4	225
10	Direct phosphorylation and regulation of poly(ADP-ribose) polymerase-1 by extracellular signal-regulated kinases $1/2$. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7136-7141.	7.1	194
11	Poly(ADP-Ribose) Polymerase-1 Promotes Microglial Activation, Proliferation, and Matrix Metalloproteinase-9-Mediated Neuron Death. Journal of Immunology, 2005, 174, 2288-2296.	0.8	168
12	Zinc Triggers Microglial Activation. Journal of Neuroscience, 2008, 28, 5827-5835.	3 . 6	157
13	The role of poly(ADP-ribose) polymerase-1 in CNS disease. Neuroscience, 2007, 145, 1267-1272.	2.3	137
14	Minocycline prevents neurotoxicity induced by cerebrospinal fluid from patients with motor neurone disease. Brain, 2002, 125, 722-731.	7.6	136
15	Nâ€acetylcysteine prevents loss of dopaminergic neurons in the <i>EAAC1</i> ^{â^'/â^'} mouse. Annals of Neurology, 2011, 69, 509-520.	5.3	120
16	Microglial activation induced by brain trauma is suppressed by post-injury treatment with a PARP inhibitor. Journal of Neuroinflammation, 2012, 9, 31.	7.2	118
17	Exposure to gestational diabetes mellitus induces neuroinflammation, derangement of hippocampal neurons, and cognitive changes in rat offspring. Journal of Neuroinflammation, 2017, 14, 80.	7.2	105
18	Use of a Poly(ADP-Ribose) Polymerase Inhibitor to Suppress Inflammation and Neuronal Death After Cerebral Ischemia-Reperfusion. Stroke, 2007, 38, 632-636.	2.0	100

#	Article	IF	Citations
19	Poly(ADP-ribose)polymerase-1 modulates microglial responses to amyloid \hat{l}^2 . Journal of Neuroinflammation, 2011, 8, 152.	7.2	87
20	Tetracycline derivatives and ceftriaxone, a cephalosporin antibiotic, protect neurons against apoptosis induced by ionizing radiation. Journal of Neurochemistry, 2001, 78, 1409-1414.	3.9	84
21	Inhibition of Poly(ADP-Ribose) Polymerase Suppresses Inflammation and Promotes Recovery after Ischemic Injury. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 820-829.	4.3	81
22	Recurrent/moderate hypoglycemia induces hippocampal dendritic injury, microglial activation, and cognitive impairment in diabetic rats. Journal of Neuroinflammation, 2012, 9, 182.	7.2	74
23	Selective targeting of microglia by quantum dots. Journal of Neuroinflammation, 2012, 9, 22.	7.2	64
24	Inhibition of NADPH oxidase activation reduces EAE-induced white matter damage in mice. Journal of Neuroinflammation, 2015, 12, 104.	7.2	64
25	NF-κB transcriptional activation by TNFα requires phospholipase C, extracellular signal-regulated kinase 2 and poly(ADP-ribose) polymerase-1. Journal of Neuroinflammation, 2015, 12, 229.	7.2	49
26	Microglial NMDA receptors drive proâ€inflammatory responses via PARPâ€1/TRMP2 signaling. Glia, 2020, 68, 1421-1434.	4.9	49
27	Poly(ADP-ribose) polymerase-1-induced NAD+ depletion promotes nuclear factor-l ^o B transcriptional activity by preventing p65 de-acetylation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1985-1991.	4.1	48
28	Poly(ADP-ribose) polymerase-1 activation in a primate model of multiple sclerosis. Journal of Neuroscience Research, 2005, 81, 190-198.	2.9	46
29	EAAC1 Gene Deletion Alters Zinc Homeostasis and Exacerbates Neuronal Injury after Transient Cerebral Ischemia. Journal of Neuroscience, 2010, 30, 15409-15418.	3.6	43
30	Multiple roles for poly(ADP-ribose)polymerase-1 in neurological disease. Neurochemistry International, 2007, 50, 954-958.	3.8	41
31	Poly(ADP-ribose) polymerase-1 regulates microglia mediated decrease of endothelial tight junction integrity. Neurochemistry International, 2017, 108, 266-271.	3.8	38
32	Glutamatergic receptors regulate expression, phosphorylation and accumulation of neurofilaments in spinal cord neurons. Neuroscience, 1999, 93, 1123-1133.	2.3	27
33	Prevention of hypoglycemia-induced neuronal death by minocycline. Journal of Neuroinflammation, 2012, 9, 225.	7.2	26
34	Poly(ADP-ribose) polymerase 2 contributes to neuroinflammation and neurological dysfunction in mouse experimental autoimmune encephalomyelitis. Journal of Neuroinflammation, 2013, 10, 49.	7.2	26
35	Aberrant cardiolipin metabolism is associated with cognitive deficiency and hippocampal alteration in tafazzin knockdown mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3353-3367.	3.8	24
36	Prevention of Hypoglycemia-Induced Neuronal Death by Hypothermia. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 390-402.	4.3	23

3

#	Article	IF	CITATION
37	Selective Down-Regulation of Nuclear Poly(ADP-Ribose) Glycohydrolase. PLoS ONE, 2009, 4, e4896.	2.5	16
38	Early growth response 2 (Egr-2) expression is triggered by NF-κB activation. Molecular and Cellular Neurosciences, 2015, 64, 95-103.	2.2	16
39	RAD51-Mediated DNA Homologous Recombination Is Independent of PTEN Mutational Status. Cancers, 2020, 12, 3178.	3.7	10
40	PARP-DNA trapping ability of PARP inhibitors jeopardizes astrocyte viability: Implications for CNS disease therapeutics. Neuropharmacology, 2021, 187, 108502.	4.1	9
41	The Role of Glia in Excitotoxicity and Stroke. , 2007, , 145-164.		5
42	Heat Shock - Induced Hsp70 Expression in Murine Astrocytes Does not Require Poly(ADP-ribose) Polymerase Activity. Cellular Physiology and Biochemistry, 2003, 13, 297-300.	1.6	4