Charles Glabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10623011/publications.pdf

Version: 2024-02-01

257450 434195 4,094 34 24 31 h-index citations g-index papers 36 36 36 5529 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cu(II) Potentiation of Alzheimer Aβ Neurotoxicity. Journal of Biological Chemistry, 1999, 274, 37111-37116.	3.4	688
2	Atomic View of a Toxic Amyloid Small Oligomer. Science, 2012, 335, 1228-1231.	12.6	518
3	Different Conformations of Amyloid \hat{l}^2 Induce Neurotoxicity by Distinct Mechanisms in Human Cortical Neurons. Journal of Neuroscience, 2006, 26, 6011-6018.	3.6	466
4	Annular Protofibrils Are a Structurally and Functionally Distinct Type of Amyloid Oligomer. Journal of Biological Chemistry, 2009, 284, 4230-4237.	3.4	307
5	Soluble Amyloid Oligomers Increase Bilayer Conductance by Altering Dielectric Structure. Journal of General Physiology, 2006, 128, 637-647.	1.9	211
6	Intracellular Mechanisms of Amyloid Accumulation and Pathogenesis in Alzheimer's Disease. Journal of Molecular Neuroscience, 2001, 17, 137-145.	2.3	205
7	Progressive accumulation of amyloidâ€ β oligomers in Alzheimer's disease and in amyloid precursor protein transgenic mice is accompanied by selective alterations in synaptic scaffold proteins. FEBS Journal, 2010, 277, 3051-3067.	4.7	188
8	Fibrillar Oligomers Nucleate the Oligomerization of Monomeric Amyloid \hat{l}^2 but Do Not Seed Fibril Formation. Journal of Biological Chemistry, 2010, 285, 6071-6079.	3.4	143
9	Conformation dependent monoclonal antibodies distinguish different replicating strains or conformers of prefibrillar ${\rm A}\hat{\rm I}^2$ oligomers. Molecular Neurodegeneration, 2010, 5, 57.	10.8	135
10	Intracellular ${\sf A}\hat{\sf I}^2$ 1-42 Aggregates Stimulate the Accumulation of Stable, Insoluble Amyloidogenic Fragments of the Amyloid Precursor Protein in Transfected Cells. Journal of Biological Chemistry, 1995, 270, 14786-14792.	3.4	124
11	Days to criterion as an indicator of toxicity associated with human Alzheimer amyloidâ€Î² oligomers. Annals of Neurology, 2010, 68, 220-230.	5.3	123
12	A Two-Year Study with Fibrillar Â-Amyloid (AÂ) Immunization in Aged Canines: Effects on Cognitive Function and Brain AÂ. Journal of Neuroscience, 2008, 28, 3555-3566.	3.6	113
13	Monoclonal Antibodies against A \hat{l}^2 42 Fibrils Distinguish Multiple Aggregation State Polymorphisms in Vitro and in Alzheimer Disease Brain. Journal of Biological Chemistry, 2014, 289, 32131-32143.	3.4	103
14	Synaptic Amyloid- \hat{l}^2 Oligomers Precede p-Tau and Differentiate High Pathology Control Cases. American Journal of Pathology, 2016, 186, 185-198.	3.8	94
15	Methylene Blue Modulates Huntingtin Aggregation Intermediates and Is Protective in Huntington's Disease Models. Journal of Neuroscience, 2012, 32, 11109-11119.	3.6	86
16	Deficiency of TYROBP, an adapter protein for TREM2 and CR3 receptors, is neuroprotective in a mouse model of early Alzheimer's pathology. Acta Neuropathologica, 2017, 134, 769-788.	7.7	85
17	Hsp70 and Hsp40 Functionally Interact with Soluble Mutant Huntingtin Oligomers in a Classic ATP-dependent Reaction Cycle. Journal of Biological Chemistry, 2010, 285, 38183-38193.	3.4	74
18	Oxidation of $\hat{Al^2}$ and Plaque Biogenesis in Alzheimer's Disease and Down Syndrome. Neurobiology of Disease, 2001, 8, 792-806.	4.4	71

#	Article	IF	CITATIONS
19	Epitomic Characterization of the Specificity of the Anti-Amyloid \hat{Al}^2 Monoclonal Antibodies 6E10 and 4G8. Journal of Alzheimer's Disease, 2018, 66, 1235-1244.	2.6	45
20	A fibril-specific, conformation-dependent antibody recognizes a subset of $\hat{Al^2}$ plaques in Alzheimer disease, Down syndrome and Tg2576 transgenic mouse brain. Acta Neuropathologica, 2009, 118, 505-517.	7.7	41
21	Examination of potential mechanisms of amyloid-induced defects in neuronal transport. Neurobiology of Disease, 2009, 36, 11-25.	4.4	40
22	Studies on the interactions of sperm with the surface of the sea urchin egg. Developmental Biology, 1981, 84, 397-406.	2.0	36
23	Apolipoprotein E/Amyloid- \hat{l}^2 Complex Accumulates in Alzheimer Disease Cortical Synapses via Apolipoprotein E Receptors and Is Enhanced by APOE4. American Journal of Pathology, 2019, 189, 1621-1636.	3.8	35
24	Does Alzheimer disease tilt the scales of amyloid degradation versus accumulation?. Nature Medicine, 2000, 6, 133-134.	30.7	34
25	The Anti-Amyloid- \hat{l}^2 Monoclonal Antibody 4G8 Recognizes a Generic Sequence-Independent Epitope Associated with $\hat{l}\pm$ -Synuclein and Islet Amyloid Polypeptide Amyloid Fibrils. Journal of Alzheimer's Disease, 2016, 50, 517-525.	2.6	28
26	Unexpected partial correction of metabolic and behavioral phenotypes of Alzheimer's APP/PSEN1 mice by gene targeting of diabetes/Alzheimer's-related Sorcs1. Acta Neuropathologica Communications, 2016, 4, 16.	5.2	24
27	Crystal structure of a conformation-dependent rabbit IgG Fab specific for amyloid prefibrillar oligomers. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1908-1914.	2.4	22
28	CNI-1493 inhibits ${\hat A}^2$ production, plaque formation, and cognitive deterioration in an animal model of Alzheimer's disease. Journal of Experimental Medicine, 2008, 205, 1593-1599.	8.5	21
29	Positron Emission Tomography Imaging of Fibrillar Parenchymal and Vascular Amyloid- \hat{l}^2 in TgCRND8 Mice. ACS Chemical Neuroscience, 2013, 4, 613-623.	3.5	21
30	An "epitomic―analysis of the specificity of conformation-dependent, anti-Aß amyloid monoclonal antibodies. Journal of Biological Chemistry, 2021, 296, 100168.	3.4	9
31	Synthesis of Alzheimer's ($1\hat{a}\in$ "42) A \hat{l}^2 -amyloid peptide with preformed Fmoc-aminoacyl fluorides. Techniques in Protein Chemistry, 1997, , 865-873.	0.3	2
32	${\sf A\hat{l}^2}$ Structure and Aggregation. , 2007, , 113-131.		1
33	Improved synthesis and purification of Alzheimer's Aβ 1–42 and analogs. International Journal of Peptide Research and Therapeutics, 1999, 6, 151-156.	0.1	0
34	CNI-1493 inhibits Aß production, plaque formation, and cognitive deterioration in an animal model of Alzheimer's disease. Journal of Cell Biology, 2008, 182, i1-i1.	5.2	0