Joshua B Gurtler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10621962/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficacy of a Mixed Peroxyorganic Acid Antimicrobial Wash Solution against Salmonella, Escherichia coli O157:H7, or Listeria monocytogenes on Cherry Tomatoes. Journal of Food Protection, 2022, 85, 773-777.	1.7	6
2	Combination of aerosolized acetic acid and chlorine dioxideâ€releasing film to inactivate <scp><i>Salmonella enterica</i></scp> and its effect on quality of tomatoes and Romaine lettuce. Journal of Food Safety, 2021, 41, e12922.	2.3	3
3	Thermal Reduction of Bacillus spp. in Naturally Contaminated Mesquite Flour with Two Different Water Activities. Journal of Food Protection, 2021, 84, 490-496.	1.7	1
4	Advanced oxidation process for the inactivation of Salmonella typhimurium on tomatoes by combination of gaseous ozone and aerosolized hydrogen peroxide. International Journal of Food Microbiology, 2020, 312, 108387.	4.7	21
5	Effectiveness of edible coatings to inhibit browning and inactivate foodborne pathogens on fresh ut apples. Journal of Food Safety, 2020, 40, e12802.	2.3	18
6	Biocidal Activity of Fast Pyrolysis Biochar against Escherichia coli O157:H7 in Soil Varies Based on Production Temperature or Age of Biochar. Journal of Food Protection, 2020, 83, 1020-1029.	1.7	7
7	Two Generally Recognized as Safe Surfactants plus Acidulants Inactivate Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes in Suspension or on Dip-Inoculated Grape Tomatoes. Journal of Food Protection, 2020, 83, 637-643.	1.7	4
8	Survival of Salmonella during Apple Dehydration as Affected by Apple Cultivar and Antimicrobial Pretreatment. Journal of Food Protection, 2020, 83, 902-909.	1.7	8
9	Thermal Inactivation Kinetics of Three Heat-Resistant Salmonella Strains in Whole Liquid Egg. Journal of Food Protection, 2019, 82, 1465-1471.	1.7	6
10	Challenges in Recovering Foodborne Pathogens from Low-Water-Activity Foods. Journal of Food Protection, 2019, 82, 988-996.	1.7	12
11	Interaction of Gaseous Chlorine Dioxide and Mild Heat on the Inactivation of Salmonella on Almonds. Journal of Food Protection, 2019, 82, 1729-1735.	1.7	15
12	Microbiological Safety of Dried Spices. Annual Review of Food Science and Technology, 2019, 10, 409-427.	9.9	18
13	Influence of Antimicrobial Agents on the Thermal Sensitivity of Foodborne Pathogens: A Review. Journal of Food Protection, 2019, 82, 628-644.	1.7	19
14	Surfactant-Enhanced Organic Acid Inactivation of Tulane Virus, a Human Norovirus Surrogate. Journal of Food Protection, 2018, 81, 279-283.	1.7	12
15	Composting To Inactivate Foodborne Pathogens for Crop Soil Application: A Review. Journal of Food Protection, 2018, 81, 1821-1837.	1.7	52
16	Tomato type and post-treatment water rinse affect efficacy of acid washes against Salmonella enterica inoculated on stem scars of tomatoes and product quality. International Journal of Food Microbiology, 2018, 280, 57-65.	4.7	8
17	Inactivation of Escherichia coli O157:H7 and Salmonella and Native Microbiota on Fresh Strawberries by Antimicrobial Washing and Coating. Journal of Food Protection, 2018, 81, 1227-1235.	1.7	18
18	Salmonella enterica Contamination of Market Fresh Tomatoes: A Review. Journal of Food Protection, 2018, 81, 1193-1213.	1.7	28

Joshua B Gurtler

#	Article	IF	CITATIONS
19	Effects of pulsed electric field processing on microbial survival, quality change and nutritional characteristics of blueberries. LWT - Food Science and Technology, 2017, 77, 517-524.	5.2	64
20	Nonthermal inactivation of norovirus surrogates on blueberries using atmospheric cold plasma. Food Microbiology, 2017, 63, 1-5.	4.2	89
21	Inactivation of Salmonella Typhimurium and quality preservation of cherry tomatoes by in-package aerosolization of antimicrobials. Food Control, 2017, 73, 411-420.	5.5	18
22	Selection of Surrogate Bacteria for Use in Food Safety Challenge Studies: A Review. Journal of Food Protection, 2017, 80, 1506-1536.	1.7	72
23	Pathogen Decontamination of Food Crop Soil: A Review. Journal of Food Protection, 2017, 80, 1461-1470.	1.7	15
24	Inactivation of <i>Salmonella</i> in Shell Eggs by Hot Water Immersion and Its Effect on Quality. Journal of Food Science, 2016, 81, M709-14.	3.1	19
25	Reduction of Bacterial Pathogens and Potential Surrogates on the Surface of Almonds Using High-Intensity 405-Nanometer Light. Journal of Food Protection, 2016, 79, 1840-1845.	1.7	19
26	Salmonella isolated from ready-to-eat pasteurized liquid egg products: Thermal resistance, biochemical profile, and fatty acid analysis. International Journal of Food Microbiology, 2015, 206, 109-117.	4.7	17
27	Influence of mycorrhizal fungi on fate of E. coli O157:H7 and Salmonella in soil and internalization into Romaine lettuce plants. International Journal of Food Microbiology, 2015, 192, 95-102.	4.7	6
28	Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiology, 2015, 46, 479-484.	4.2	234
29	9.ÂEnterobacteriaceae, Coliforms, and <i>Escherichia coli</i> as Quality and Safety Indicators. , 2015, , .		25
30	Inactivation of <i>E. coli</i> O157:H7 in Cultivable Soil by Fast and Slow Pyrolysis-Generated Biochar. Foodborne Pathogens and Disease, 2014, 11, 215-223.	1.8	24
31	The Microbiological Safety of Spices and Low-Water Activity Foods: Correcting Historic Misassumptions. , 2014, , 3-13.		15
32	Reduction of an E. coli O157:H7 and Salmonella composite on fresh strawberries by varying antimicrobial washes and vacuum perfusion. International Journal of Food Microbiology, 2014, 189, 113-118.	4.7	13
33	Salmonella and Escherichia coli O157:H7 Survival in Soil and Translocation into Leeks (Allium porrum) as Influenced by an Arbuscular Mycorrhizal Fungus (Glomus intraradices). Applied and Environmental Microbiology, 2013, 79, 1813-1820.	3.1	16
34	Development of Antimicrobial Coatings for Improving the Microbiological Safety and Quality of Shell Eggs. Journal of Food Protection, 2013, 76, 779-785.	1.7	35
35	Kinetics Model Comparison for the Inactivation ofSalmonellaSerotypes Enteritidis and Oranienburg in 10% Salted Liquid Whole Egg. Foodborne Pathogens and Disease, 2013, 10, 492-499.	1.8	5
36	Propylparaben Sensitizes Heat-Resistant Salmonella Enteritidis and Salmonella Oranienburg to Thermal Inactivation in Liquid Egg Albumen. Journal of Food Protection, 2012, 75, 443-448.	1.7	9

Joshua B Gurtler

#	Article	IF	CITATIONS
37	Inactivation of Listeria innocua, Salmonella Typhimurium, and Escherichia coli O157:H7 on Surface and Stem Scar Areas of Tomatoes Using In-Package Ozonation. Journal of Food Protection, 2012, 75, 1611-1618.	1.7	42
38	Growth Kinetics and Model Comparison of <i>Cronobacter sakazakii</i> in Reconstituted Powdered Infant Formula. Journal of Food Science, 2012, 77, E247-55.	3.1	32
39	Inactivation of Salmonella enterica on tomato stem scars by antimicrobial solutions and vacuum perfusion. International Journal of Food Microbiology, 2012, 159, 84-92.	4.7	22
40	Inactivation of Salmonella on whole cantaloupe by application of an antimicrobial coating containing chitosan and allyl isothiocyanate. International Journal of Food Microbiology, 2012, 155, 165-170.	4.7	82
41	Pulsed electric field inactivation of E.Âcoli O157:H7 and non-pathogenic surrogate E.Âcoli in strawberry juice as influenced by sodium benzoate, potassium sorbate, and citric acid. Food Control, 2011, 22, 1689-1694.	5.5	48
42	Modeling the Thermal Inactivation Kinetics of Heat-Resistant Salmonella Enteritidis and Oranienburg in 10 Percent Salted Liquid Egg Yolk. Journal of Food Protection, 2011, 74, 882-892.	1.7	15
43	A mathematical model of inactivation kinetics for a four-strain composite ofÂSalmonella Enteritidis and Oranienburg in commercial liquid egg yolkâ~†. Food Microbiology, 2011, 28, 67-75.	4.2	25
44	Selection of surrogate bacteria in place of E. coli O157:H7 and Salmonella Typhimurium for pulsed electric field treatment of orange juice1. International Journal of Food Microbiology, 2010, 139, 1-8.	4.7	93
45	BEHAVIOR OF AVIRULENT <i>YERSINIA PESTIS</i> IN LIQUID WHOLE EGG AS AFFECTED BY STORAGE TEMPERATURE, ANTIMICROBIALS AND THERMAL PASTEURIZATION. Journal of Food Safety, 2010, 30, 537-557.	2.3	12
46	Selected Pathogens of Concern to Industrial Food Processors: Infectious, Toxigenic, Toxico-Infectious, Selected Emerging Pathogenic Bacteria. , 2010, , 5-61.		17
47	Stress, Sublethal Injury, Resuscitation, and Virulence of Bacterial Foodborne Pathogens. Journal of Food Protection, 2009, 72, 1121-1138.	1.7	393
48	Cronobacter sakazakii in foods and factors affecting its survival, growth, and inactivation. International Journal of Food Microbiology, 2009, 136, 204-213.	4.7	138
49	Survival and Growth of <i>Salmonella</i> Enteritidis in Liquid Egg Products Varying by Temperature, Product Composition, and Carbon Dioxide Concentration. Foodborne Pathogens and Disease, 2009, 6, 561-567.	1.8	18
50	Inhibition of Growth of Enterobacter sakazakii in Reconstituted Infant Formula by the Lactoperoxidase System. Journal of Food Protection, 2007, 70, 2104-2110.	1.7	24
51	Survival of Enterobacter sakazakii in Powdered Infant Formula as Affected by Composition, Water Activity, and Temperature. Journal of Food Protection, 2007, 70, 1579-1586.	1.7	62
52	Growth of Enterobacter sakazakii in Reconstituted Infant Formula as Affected by Composition and Temperature. Journal of Food Protection, 2007, 70, 2095-2103.	1.7	25
53	A Solid Agar Overlay Method for Recovery of Heat-Injured Listeria monocytogenes. Journal of Food Protection, 2006, 69, 428-431.	1.7	24
54	Enterobacter sakazakii: A coliform of increased concern to infant health. International Journal of Food Microbiology, 2005, 104, 1-34.	4.7	233

#	Article	IF	CITATIONS
55	Evaluation of Several Modifications of an Ecometric Technique for Assessment of Media Performance. Journal of Food Protection, 2003, 66, 1727-1732.	1.7	13