List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10621833/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of an articular cartilage lubrication with a viscosupplement in vitro and in vivo following osteochondral fractures in horses. American Journal of Veterinary Research, 2021, 82, 611-618.	0.3	2
2	Matrix Rigidity Controls Epithelial-Mesenchymal Plasticity and Tumor Metastasis via a Mechanoresponsive EPHA2/LYN Complex. Developmental Cell, 2020, 54, 302-316.e7.	3.1	128
3	Impact insertion of osteochondral grafts: Interference fit and central graft reduction affect biomechanics and cartilage damage. Journal of Orthopaedic Research, 2018, 36, 377-386.	1.2	8
4	ISSLS PRIZE IN BASIC SCIENCE 2018: Growth differentiation factor-6 attenuated pro-inflammatory molecular changes in the rabbit anular-puncture model and degenerated disc-induced pain generation in the rat xenograft radiculopathy model. European Spine Journal, 2018, 27, 739-751.	1.0	27
5	Biomechanics of osteochondral impact with cushioning and graft Insertion: Cartilage damage is correlated with delivered energy. Journal of Biomechanics, 2018, 73, 127-136.	0.9	10
6	Tailoring hydrogel surface properties to modulate cellular response to shear loading. Acta Biomaterialia, 2017, 52, 105-117.	4.1	14
7	Effect of hyaluronidase on tissue-engineered human septal cartilage. Laryngoscope, 2016, 126, 1984-1989.	1.1	3
8	Hyaluronan concentration and size distribution in human knee synovial fluid: variations with age and cartilage degeneration. Arthritis Research and Therapy, 2016, 18, 18.	1.6	94
9	Ex vivo loading of trussed implants for spine fusion induces heterogeneous strains consistent with homeostatic bone mechanobiology. Journal of Biomechanics, 2016, 49, 4090-4097.	0.9	12
10	Matrix stiffness drives epithelial–mesenchymal transition and tumour metastasis through a TWIST1–G3BP2 mechanotransduction pathway. Nature Cell Biology, 2015, 17, 678-688.	4.6	699
11	Craniofacial Cartilage Tissue Engineering. , 2015, , 541-552.		1
12	Evaluation of Autogenous Engineered Septal Cartilage Grafts in Rabbits: A Minimally Invasive Preclinical Model. Advances in Otolaryngology, 2014, 2014, 1-7.	1.1	6
13	Synovial Fluid Lubricant Properties Are Transiently Deficient After Arthroscopic Articular Cartilage Defect Repair With Platelet-Enriched Fibrin Alone and With Mesenchymal Stem Cells. Orthopaedic Journal of Sports Medicine, 2014, 2, 232596711454258.	0.8	12
14	Integrating qPLM and biomechanical test data with an anisotropic fiber distribution model and predictions of TGF- \$\$upbeta \$\$ 1 and IGF-1 regulation of articular cartilage fiber modulus. Biomechanics and Modeling in Mechanobiology, 2013, 12, 1073-1088.	1.4	9
15	Flexural Properties of Native and Tissueâ€Engineered Human Septal Cartilage. Otolaryngology - Head and Neck Surgery, 2013, 148, 576-581.	1.1	8
16	In vivo efficacy of fresh versus frozen osteochondral allografts in the goat at 6 months is associated with PRG4 secretion. Journal of Orthopaedic Research, 2013, 31, 880-886.	1.2	15
17	A compositional analysis of cadaveric human nasal septal cartilage. Laryngoscope, 2013, 123, 2120-2124.	1.1	18
18	In vitro Articular Cartilage Growth with Sequential Application of IGF-1 and TGF-β1 Enhances Volumetric Growth and Maintains Compressive Properties. Journal of Biomechanical Engineering, 2012, 134, 031001.	0.6	9

#	Article	IF	CITATIONS
19	The In Vivo Performance of Osteochondral Allografts in the Goat Is Diminished With Extended Storage and Decreased Cartilage Cellularity. American Journal of Sports Medicine, 2012, 40, 1814-1823.	1.9	75
20	Compaction Enhances Extracellular Matrix Content and Mechanical Properties of Tissue-Engineered Cartilaginous Constructs. Tissue Engineering - Part A, 2012, 18, 1151-1160.	1.6	1
21	The biophysical mechanisms of altered hyaluronan concentration in synovial fluid after anterior cruciate ligament transection. Arthritis and Rheumatism, 2012, 64, 3993-4003.	6.7	13
22	Effect of Tibial Plateau Fracture on Lubrication Function and Composition of Synovial Fluid. Journal of Bone and Joint Surgery - Series A, 2012, 94, e64.	1.4	31
23	Effects of equine joint injury on boundary lubrication of articular cartilage by synovial fluid: Role of hyaluronan. Arthritis and Rheumatism, 2012, 64, 2917-2926.	6.7	52
24	Structural and Functional Maturation of Distal Femoral Cartilage and Bone During Postnatal Development and Growth in Humans and Mice. Orthopedic Clinics of North America, 2012, 43, 173-185.	0.5	18
25	In Vivo Implantation of Tissueâ€Engineered Human Nasal Septal Neocartilage Constructs. Otolaryngology - Head and Neck Surgery, 2012, 146, 46-52.	1.1	38
26	Tmod1 and CP49 Synergize to Control the Fiber Cell Geometry, Transparency, and Mechanical Stiffness of the Mouse Lens. PLoS ONE, 2012, 7, e48734.	1.1	54
27	A systems biology approach to synovial joint lubrication in health, injury, and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4, 15-37.	6.6	191
28	Cartilage-like mechanical properties of poly (ethylene glycol)-diacrylate hydrogels. Biomaterials, 2012, 33, 6682-6690.	5.7	181
29	Contribution of Proteoglycan Osmotic Swelling Pressure to the Compressive Properties of Articular Cartilage. Biophysical Journal, 2011, 101, 916-924.	0.2	108
30	Preclinical Studies for Cartilage Repair. Cartilage, 2011, 2, 137-152.	1.4	110
31	Fluid movement and joint capsule strains due to flexion in rabbit knees. Journal of Biomechanics, 2011, 44, 2761-2767.	0.9	17
32	Effect of initial cell seeding density on 3D-engineered silk fibroin scaffolds for articular cartilage tissue engineering. Biomaterials, 2011, 32, 8927-8937.	5.7	101
33	Biomechanical properties of mixtures of blood and synovial fluid. Journal of Orthopaedic Research, 2011, 29, 240-246.	1.2	13
34	<i>In Vitro</i> Modulation of Cartilage Shape Plasticity by Biochemical Regulation of Matrix Remodeling. Tissue Engineering - Part A, 2011, 17, 17-23.	1.6	7
35	Modeling the collagen fibril network of biological tissues as a nonlinearly elastic material using a continuous volume fraction distribution function. Mathematics and Mechanics of Solids, 2011, 16, 706-715.	1.5	9
36	Semiâ€permeable membrane retention of synovial fluid lubricants hyaluronan and proteoglycan 4 for a biomimetic bioreactor. Biotechnology and Bioengineering, 2010, 106, 149-160.	1.7	20

#	Article	IF	CITATIONS
37	Effect of a focal articular defect on cartilage deformation during patelloâ€femoral articulation. Journal of Orthopaedic Research, 2010, 28, 1554-1561.	1.2	35
38	Shape, loading, and motion in the bioengineering design, fabrication, and testing of personalized synovial joints. Journal of Biomechanics, 2010, 43, 156-165.	0.9	39
39	Macroscopic assessment of cartilage shear: Effects of counter-surface roughness, synovial fluid lubricant, and compression offset. Journal of Biomechanics, 2010, 43, 1787-1793.	0.9	10
40	Mechanical asymmetry during articulation of tibial and femoral cartilages: Local and overall compressive and shear deformation and properties. Journal of Biomechanics, 2010, 43, 1689-1695.	0.9	40
41	Differential regulation of immature articular cartilage compressive moduli and Poisson's ratios by in vitro stimulation with IGF-1 and TGF-β1. Journal of Biomechanics, 2010, 43, 2501-2507.	0.9	18
42	Interactive Cytokine Regulation of Synoviocyte Lubricant Secretion. Tissue Engineering - Part A, 2010, 16, 1329-1337.	1.6	34
43	Tissue Engineering by Molecular Disassembly and Reassembly: Biomimetic Retention of Mechanically Functional Aggrecan in Hydrogel. Tissue Engineering - Part C: Methods, 2010, 16, 1471-1479.	1.1	7
44	The Proteoglycan Metabolism of Articular Cartilage in Joint-Scale Culture. Tissue Engineering - Part A, 2010, 16, 1717-1727.	1.6	9
45	Insulin-like Growth Factor-I and Growth Differentiation Factor-5 Promote the Formation of Tissue-Engineered Human Nasal Septal Cartilage. Tissue Engineering - Part C: Methods, 2010, 16, 1213-1221.	1.1	32
46	A Nonlinear Constituent Based Viscoelastic Model for Articular Cartilage and Analysis of Tissue Remodeling Due to Altered Glycosaminoglycan-Collagen Interactions. Journal of Biomechanical Engineering, 2009, 131, 101002.	0.6	26
47	Expansion and Redifferentiation of Chondrocytes from Osteoarthritic Cartilage: Cells for Human Cartilage Tissue Engineering. Tissue Engineering - Part A, 2009, 15, 3513-3523.	1.6	53
48	Chondrocyte Viability is Higher after Prolonged Storage at 37°C than at 4 C for Osteochondral Grafts. American Journal of Sports Medicine, 2009, 37, 24-32.	1.9	105
49	The effects of focal articular defects on cartilage contact mechanics. Journal of Orthopaedic Research, 2009, 27, 584-592.	1.2	73
50	Effect of risedronate in a minipig cartilage defect model with allograft. Journal of Orthopaedic Research, 2009, 27, 360-365.	1.2	15
51	Asymmetrical strain distributions and neutral axis location of cartilage in flexure. Journal of Biomechanics, 2009, 42, 325-330.	0.9	9
52	Tissue Engineering of Articular Cartilage with Biomimetic Zones. Tissue Engineering - Part B: Reviews, 2009, 15, 143-157.	2.5	273
53	Regulation of immature cartilage growth by IGF-I, TGF-β1, BMP-7, and PDGF-AB: role of metabolic balance between fixed charge and collagen network. Biomechanics and Modeling in Mechanobiology, 2008, 7, 263-276.	1.4	29
54	Biomechanics of cartilage articulation: Effects of lubrication and degeneration on shear deformation. Arthritis and Rheumatism, 2008, 58, 2065-2074.	6.7	86

#	Article	IF	CITATIONS
55	Experimental measurement and quantification of frictional contact between biological surfaces experiencing large deformation and slip. Journal of Biomechanics, 2008, 41, 1333-1340.	0.9	8
56	Shaped, Stratified, Scaffold-free Grafts for Articular Cartilage Defects. Clinical Orthopaedics and Related Research, 2008, 466, 1912-1920.	0.7	28
57	Articular cartilage tensile integrity: Modulation by matrix depletion is maturation-dependent. Archives of Biochemistry and Biophysics, 2008, 474, 175-182.	1.4	39
58	<i>In Vivo</i> Maturation of Scaffold-free Engineered Articular Cartilage on Hydroxyapatite. Tissue Engineering - Part A, 2008, 14, 1905-1913.	1.6	26
59	A Cartilage Growth Mixture Model With Collagen Remodeling: Validation Protocols. Journal of Biomechanical Engineering, 2008, 130, 031006.	0.6	27
60	Bioengineering Cartilage Growth, Maturation, and Form. Pediatric Research, 2008, 63, 527-534.	1.1	49
61	The effects of focal articular defects on intra-tissue strains in the surrounding and opposing cartilage. Biorheology, 2008, 45, 193-207.	1.2	30
62	Shear deformation kinematics during cartilage articulation: effect of lubrication, degeneration, and stress relaxation. MCB Molecular and Cellular Biomechanics, 2008, 5, 197-206.	0.3	23
63	Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB Journal, 2007, 21, 790-801.	0.2	422
64	Short-Term Retention of Labeled Chondrocyte Subpopulations in Stratified Tissue-Engineered Cartilaginous Constructs Implanted In Vivo in Mini-Pigs. Tissue Engineering, 2007, 13, 1525-1537.	4.9	35
65	Mechanisms of cartilage growth: Modulation of balance between proteoglycan and collagen in vitro using chondroitinase ABC. Arthritis and Rheumatism, 2007, 56, 188-198.	6.7	80
66	Boundary lubrication of articular cartilage: Role of synovial fluid constituents. Arthritis and Rheumatism, 2007, 56, 882-891.	6.7	447
67	Microenvironment regulation of PRG4 phenotype of chondrocytes. Journal of Orthopaedic Research, 2007, 25, 685-695.	1.2	18
68	Depth-dependent biomechanical and biochemical properties of fetal, newborn, and tissue-engineered articular cartilage. Journal of Biomechanics, 2007, 40, 182-190.	0.9	129
69	Articular cartilage mechanical and biochemical property relations before and after in vitro growth. Journal of Biomechanics, 2007, 40, 3607-3614.	0.9	50
70	Three-dimensional (3-D) imaging of chondrocytes in articular cartilage: Growth-associated changes in cell organization. Biomaterials, 2007, 28, 230-239.	5.7	37
71	Tissue Engineering of Articular Cartilage. , 2006, , 157-189.		4
72	Probing the role of multicellular organization in three-dimensional microenvironments. Nature Methods, 2006, 3, 369-375.	9.0	523

#	Article	IF	CITATIONS
73	Biomechanical assessment of tissue retrieved after in vivo cartilage defect repair: tensile modulus of repair tissue and integration with host cartilage. Journal of Biomechanics, 2006, 39, 138-146.	0.9	44
74	Indentation testing of human articular cartilage: Effects of probe tip geometry and indentation depth on intra-tissue strain. Journal of Biomechanics, 2006, 39, 1039-1047.	0.9	70
75	Dynamic shear stimulation of bovine cartilage biosynthesis of proteoglycan 4. Arthritis and Rheumatism, 2006, 54, 1888-1896.	6.7	107
76	Interleukin-1α induction of tensile weakening associated with collagen degradation in bovine articular cartilage. Arthritis and Rheumatism, 2006, 54, 3267-3276.	6.7	18
77	Compressive Biomechanical Properties of Human Nasal Septal Cartilage. American Journal of Rhinology & Allergy, 2006, 20, 496-501.	2.3	49
78	Tailoring Secretion of Proteoglycan 4 (PRG4) in Tissue-Engineered Cartilage. Tissue Engineering, 2006, 12, 1429-1439.	4.9	26
79	Tailoring Secretion of Proteoglycan 4 (PRG4) in Tissue-Engineered Cartilage. Tissue Engineering, 2006, .	4.9	0
80	Exposure to Pulsed Low Intensity Ultrasound Stimulates Extracellular Matrix Metabolism of Bovine Intervertebral Disc Cells Cultured in Alginate Beads. Spine, 2005, 30, 2398-2405.	1.0	31
81	Evaluation of subchondral bone mineral density associated with articular cartilage structure and integrity in healthy equine joints with different functional demands. American Journal of Veterinary Research, 2005, 66, 1823-1829.	0.3	10
82	Treatment of cartilage with β-aminopropionitrile accelerates subsequent collagen maturation and modulates integrative repair. Journal of Orthopaedic Research, 2005, 23, 594-601.	1.2	22
83	Proteoglycan 4 (PRG4) synthesis and immunolocalization in bovine meniscus. Journal of Orthopaedic Research, 2005, 23, 562-568.	1.2	92
84	A cartilage growth mixture model for infinitesimal strains: solutions of boundary-value problems related to in vitro growth experiments. Biomechanics and Modeling in Mechanobiology, 2005, 3, 209-223.	1.4	23
85	Cell density alters matrix accumulation in two distinct fractions and the mechanical integrity of alginate–chondrocyte constructs. Acta Biomaterialia, 2005, 1, 625-633.	4.1	72
86	Tensile Biomechanical Properties of Human Nasal Septal Cartilage. American Journal of Rhinology & Allergy, 2005, 19, 617-622.	2.3	47
87	Depth-varying Density and Organization of Chondrocytes in Immature and Mature Bovine Articular Cartilage Assessed by 3D Imaging and Analysis. Journal of Histochemistry and Cytochemistry, 2005, 53, 1109-1119.	1.3	102
88	Photo- and electropatterning of hydrogel-encapsulated living cell arrays. Lab on A Chip, 2005, 5, 111.	3.1	257
89	Mechanical Characterization of Native and Tissue-Engineered Cartilage. , 2004, 101, 157-190.		18

#	Article	IF	CITATIONS
91	Tissue-Engineered Human Nasal Septal Cartilage Using the Alginate-Recovered-Chondrocyte Method. Laryngoscope, 2004, 114, 38-45.	1.1	62
92	Synthesis of proteoglycan 4 by chondrocyte subpopulations in cartilage explants, monolayer cultures, and resurfaced cartilage cultures. Arthritis and Rheumatism, 2004, 50, 2849-2857.	6.7	79
93	Geometric and Material Determinants of Patterning Efficiency by Dielectrophoresis. Biophysical Journal, 2004, 87, 2131-2147.	0.2	75
94	Dependence of Cartilage Matrix Composition on Biosynthesis, Diffusion, and Reaction. Transport in Porous Media, 2003, 50, 57-73.	1.2	51
95	Microenvironment regulation of extracellular signal-regulated kinase activity in chondrocytes: Effects of culture configuration, interleukin-1, and compressive stress. Arthritis and Rheumatism, 2003, 48, 689-699.	6.7	49
96	Indentation testing of human cartilage: Sensitivity to articular surface degeneration. Arthritis and Rheumatism, 2003, 48, 3382-3394.	6.7	98
97	Tensile mechanical properties of bovine articular cartilage: Variations with growth and relationships to collagen network components. Journal of Orthopaedic Research, 2003, 21, 872-880.	1.2	244
98	A novel two-step method for the formation of tissue-engineered cartilage by mature bovine chondrocytes: The alginate-recovered-chondrocyte (ARC) method. Journal of Orthopaedic Research, 2003, 21, 139-148.	1.2	238
99	Growth of Immature Articular Cartilage in Vitro: Correlated Variation in Tensile Biomechanical and Collagen Network Properties. Tissue Engineering, 2003, 9, 625-634.	4.9	64
100	A Growth Mixture Theory for Cartilage With Application to Growth-Related Experiments on Cartilage Explants. Journal of Biomechanical Engineering, 2003, 125, 169-179.	0.6	79
101	Bioengineering the Growth of Articular Cartilage. , 2003, , 194-210.		0
102	PROLONGED STORAGE EFFECTS ON THE ARTICULAR CARTILAGE OF FRESH HUMAN OSTEOCHONDRAL ALLOGRAFTS. Journal of Bone and Joint Surgery - Series A, 2003, 85, 2111-2120.	1.4	282
103	Perfusion Increases Cell Content and Matrix Synthesis in Chondrocyte Three-Dimensional Cultures. Tissue Engineering, 2002, 8, 807-816.	4.9	190
104	Induction of advanced glycation end products and alterations of the tensile properties of articular cartilage. Arthritis and Rheumatism, 2002, 46, 3212-3217.	6.7	115
105	Development-associated differences in integrative cartilage repair: Roles of biosynthesis and matrix. Journal of Orthopaedic Research, 2002, 20, 1274-1281.	1.2	33
106	The biomechanical faces of articular cartilage in growth, aging,and osteoarthritis. , 2002, , 409-422.		3
107	Growth Responses of Cartilage to Static and Dynamic Compression. Clinical Orthopaedics and Related Research, 2001, 391, S34-S48.	0.7	52
108	Integrative cartilage repair: adhesive strength is correlated with collagen deposition. Journal of Orthopaedic Research, 2001, 19, 1105-1112.	1.2	83

#	Article	IF	CITATIONS
109	Mechanisms of chondrocyte adhesion to cartilage: role of β1-integrins, CD44, and annexin V. Journal of Orthopaedic Research, 2001, 19, 1122-1130.	1.2	48
110	Compressive properties and function—composition relationships of developing bovine articular cartilage. Journal of Orthopaedic Research, 2001, 19, 1113-1121.	1.2	288
111	Formulation of PEG-based hydrogels affects tissue-engineered cartilage construct characteristics. Journal of Materials Science: Materials in Medicine, 2001, 12, 983-990.	1.7	50
112	Cartilage Repair With Autogenic Perichondrium Cell and Polylactic Acid Grafts. Clinical Orthopaedics and Related Research, 2000, 377, 248-264.	0.7	49
113	Mechanical compression modulates proliferation of transplanted chondrocytes. Journal of Orthopaedic Research, 2000, 18, 374-382.	1.2	22
114	Biomechanical regulation of matrix metalloproteinase-9 in cultured chondrocytes. Journal of Orthopaedic Research, 2000, 18, 899-908.	1.2	66
115	Effect of seeding duration on the strength of chondrocyte adhesion to articular cartilage. Journal of Orthopaedic Research, 1999, 17, 121-129.	1.2	42
116	Effect of static compression on proteoglycan biosynthesis by chondrocytes transplanted to articular cartilagein vitro. Journal of Orthopaedic Research, 1998, 16, 542-550.	1.2	23
117	Physical properties of rabbit articular cartilage after transection of the anterior cruciate ligament. Journal of Orthopaedic Research, 1997, 15, 197-203.	1.2	117
118	Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. Journal of Orthopaedic Research, 1997, 15, 499-506.	1.2	552
119	Chondrocyte transplantation to articular cartilage explantsin vitro. Journal of Orthopaedic Research, 1997, 15, 791-802.	1.2	61
120	Video microscopy to quantitate the inhomogeneous equilibrium strain within articular cartilage during confined compression. Annals of Biomedical Engineering, 1996, 24, 500-512.	1.3	150
121	Differential effects of serum, insulin-like growth factor-I, and fibroblast growth factor-2 on the maintenance of cartilage physical properties during long-term culture. Journal of Orthopaedic Research, 1996, 14, 44-52.	1.2	77
122	Integrative repair of articular cartilagein vitro: Adhesive strength of the interface region. Journal of Orthopaedic Research, 1995, 13, 751-760.	1.2	106