
Zbigniew Banaszak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1062143/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrated fault-tolerant control of assembly and automated guided vehicle-based transportation layers. International Journal of Computer Integrated Manufacturing, 2022, 35, 409-426.	2.9	12
2	Pricing and quality competition for substitutable green products with a common retailer. Operational Research, 2022, 22, 3713-3746.	1.3	5
3	UAVs' Dynamic Routing, Subject to Time Windows Variation. IFAC-PapersOnLine, 2022, 55, 457-462.	0.5	0
4	Comparison of exact and approximate approaches to UAVs mission contingency planning in dynamic environments. Mathematical Biosciences and Engineering, 2022, 19, 7091-7121.	1.0	1
5	The no-wait cyclic scheduling of delivery traffic in the grid distribution network. ISA Transactions, 2022, , .	3.1	3
6	A Declarative Approach to New Product Development Project Prototyping. IEEE Intelligent Systems, 2021, 36, 88-95.	4.0	4
7	Optimization of capacitated vehicle routing problem with alternative delivery, pick-up and time windows: A modified hybrid approach. Neurocomputing, 2021, 423, 670-678.	3.5	49
8	Reference model of milk-run traffic systems prototyping. International Journal of Production Research, 2021, 59, 4495-4512.	4.9	15
9	Periodic Distributed Delivery Routes Planning Subject to Uncertainty of Travel Parameters. Lecture Notes in Computer Science, 2021, , 277-289.	1.0	1
10	Out-Plant Milk-Run-Driven Mission Planning Subject to Dynamic Changes of Date and Place Delivery. Lecture Notes in Computer Science, 2021, , 151-167.	1.0	0
11	Rerouting and Rescheduling of In-Plant Milk Run Based Delivery Subject to Supply Reconfigurability Constraints. Studies in Systems, Decision and Control, 2021, , 55-78.	0.8	3
12	An ordered-fuzzy-numbers-driven approach to the milk-run routing and scheduling problem. Journal of Computational Science, 2021, 49, 101288.	1.5	10
13	Reactive UAV Fleet's Mission Planning in Highly Dynamic and Unpredictable Environments. Sustainability, 2021, 13, 5228.	1.6	17
14	Periodic planning of UAVs' fleet mission with the uncertainty of travel parameters. , 2021, , .		3
15	A fuzzy logic approach to remaining useful life control and scheduling of cooperating forklifts. , 2021, , .		3
16	Reactive Planning-Driven Approach to Online UAVs Mission Rerouting and Rescheduling. Applied Sciences (Switzerland), 2021, 11, 8898.	1.3	3
17	Cost Projections for the Product Life Cycle at the Early Stages of Product Development. IFIP Advances in Information and Communication Technology, 2021, , 437-446.	0.5	0
18	Decision Support Model for the Configuration of Multidimensional Resources in Multi-project Management. Lecture Notes in Computer Science, 2021, , 290-303.	1.0	0

#	Article	IF	CITATIONS
19	Competence-oriented project team planning – university case study. Journal of Information and Telecommunication, 2021, 5, 310-333.	2.2	0
20	A fuzzy logic approach to fault-tolerant scheduling of semi-automated assembly systems*. , 2021, , .		0
21	A method for planning competency frameworks robust to disruptions - a case study of a manufacturing company. IFAC-PapersOnLine, 2021, 54, 1073-1080.	0.5	2
22	UAVs Fleet Mission Planning Subject to Weather Fore-Cast and Energy Consumption Constraints. Advances in Intelligent Systems and Computing, 2020, , 104-114.	0.5	8
23	Unmanned Aerial Vehicle Routing Problems: A Literature Review. Applied Sciences (Switzerland), 2020, 10, 4504.	1.3	41
24	Interactive Planning of Competency-Driven University Teaching Staff Allocation. Applied Sciences (Switzerland), 2020, 10, 4894.	1.3	7
25	Fuzzy modelling and robust fault-tolerant scheduling of cooperating forklifts. , 2020, , .		5
26	Milk-run Routing and Scheduling Subject to Fuzzy Pickup and Delivery Time Constraints: An Ordered Fuzzy Numbers Approach. , 2020, , .		12
27	Dynamic Planning of Mobile Service Teams' Mission Subject to Orders Uncertainty Constraints. Applied Sciences (Switzerland), 2020, 10, 8872.	1.3	4
28	UAV Mission Planning Resistant to Weather Uncertainty. Sensors, 2020, 20, 515.	2.1	59
29	Blockage-Free Route Planning for In-Plant Milk-Run Material Delivery Systems. Studies in Systems, Decision and Control, 2020, , 105-132.	0.8	3
30	Constraint Programming for New Product Development Project Prototyping. Lecture Notes in Computer Science, 2020, , 26-37.	1.0	1
31	Simulation Versus an Ordered–Fuzzy-Numbers-Driven Approach to the Multi-depot Vehicle Cyclic Routing and Scheduling Problem. Lecture Notes in Computer Science, 2020, , 251-266.	1.0	3
32	Robust Competence Allocation for Multi-project Scheduling. Advances in Intelligent Systems and Computing, 2020, , 16-30.	0.5	3
33	Synthesis of No-Wait Cyclic Schedules for Cascade-Like Systems of Repetitive Processes with Fixed Periods. Advances in Intelligent Systems and Computing, 2020, , 3-15.	0.5	1
34	Declarative Modelling Approach for New Product Development. IFAC-PapersOnLine, 2020, 53, 10525-10530.	0.5	3
35	A Proactive Approach to Resistant UAV Mission Planning. Advances in Intelligent Systems and Computing, 2020, , 112-124.	0.5	7
36	Reference Model of a Milk-Run Delivery Problem. Lecture Notes in Mechanical Engineering, 2019, , 150-160.	0.3	3

#	Article	IF	CITATIONS
37	Fault-tolerant control-based flexible AGV transportation in a seat assembly system. IFAC-PapersOnLine, 2019, 52, 67-72.	0.5	2
38	Milk-run routing and scheduling subject to different pick-up/delivery profiles and congestion-avoidance constraints. IFAC-PapersOnLine, 2019, 52, 313-320.	0.5	4
39	A Solution Approach for UAV Fleet Mission Planning in Changing Weather Conditions. Applied Sciences (Switzerland), 2019, 9, 3972.	1.3	22
40	Competence-driven employee substitutability planning robust to unexpected staff absenteeism. IFAC-PapersOnLine, 2019, 52, 61-66.	0.5	1
41	A decision support model for prototyping in-plant milk-run traffic systems. IFAC-PapersOnLine, 2019, 52, 814-819.	O.5	1
42	Planning deliveries with UAV routing under weather forecast and energy consumption constraints. IFAC-PapersOnLine, 2019, 52, 820-825.	0.5	39
43	Metaheuristic algorithms for balancing robotic assembly lines with sequence-dependent robot setup times. Applied Mathematical Modelling, 2019, 65, 256-270.	2.2	50
44	Energy Consumption in Unmanned Aerial Vehicles: A Review of Energy Consumption Models and Their Relation to the UAV Routing. Advances in Intelligent Systems and Computing, 2019, , 173-184.	0.5	55
45	Factors Affecting Energy Consumption of Unmanned Aerial Vehicles: An Analysis of How Energy Consumption Changes in Relation to UAV Routing. Advances in Intelligent Systems and Computing, 2019, , 228-238.	0.5	13
46	Multimodal processes prototyping subject to grid-like network and fuzzy operation time constraints. Annals of Operations Research, 2019, 273, 561-585.	2.6	15
47	Declarative Model of Competences Assessment Robust to Personnel Absence. Communications in Computer and Information Science, 2019, , 12-23.	0.4	4
48	A Declarative Modelling Framework for Routing of Multiple UAVs in a System with Mobile Battery Swapping Stations. Advances in Intelligent Systems and Computing, 2019, , 429-441.	0.5	8
49	Competence allocation planning robust to unexpected staff absenteeism. Eksploatacja I Niezawodnosc, 2019, 21, 440-450.	1.1	9
50	A cyclic scheduling approach to maintaining production flow robustness. Advances in Mechanical Engineering, 2018, 10, 168781401774624.	0.8	14
51	TOWARDS THE LEVELING OF MULTI-PRODUCT BATCH PRODUCTION FLOWS. A MULTIMODAL NETWORKS PERSPECTIVE IFAC-PapersOnLine, 2018, 51, 1434-1441.	O.5	8
52	A Diophantine Set-Driven Approach to Part Sets Cycle Time Scheduling and Repetitive Flow Balancing. Advances in Intelligent Systems and Computing, 2018, , 233-243.	0.5	2
53	An Experimental Investigation of Lead Time and the Effect of Order Crossover. Advances in Intelligent Systems and Computing, 2018, , 89-97.	0.5	0
54	Cyclic Steady-State Approach to Modelling of Multimodal Processes Flow Levelling. Lecture Notes in Mechanical Engineering, 2018, , 215-225.	0.3	2

4

#	Article	IF	CITATIONS
55	A methodology for implementation of mobile robot in adaptive manufacturing environments. Journal of Intelligent Manufacturing, 2017, 28, 1171-1188.	4.4	70
56	On liveness and a class of generalized Petri nets. , 2017, , .		8
57	Traffic flow routing and scheduling in a food supply network. Industrial Management and Data Systems, 2017, 117, 1972-1994.	2.2	7
58	Delivery-flow routing and scheduling subject to constraints imposed by vehicle flows in fractal-like networks. Archives of Control Sciences, 2017, 27, 135-150.	1.7	7
59	Designing Mass-Customized Service Subject to Public Grid-Like Network Constraints. Advances in Intelligent Systems and Computing, 2017, , 221-231.	0.5	2
60	Material supply scheduling in a ubiquitous manufacturing system. Robotics and Computer-Integrated Manufacturing, 2017, 45, 21-33.	6.1	20
61	Reduction of Congestion in Transport Networks with a Fractal Structure. Advances in Intelligent Systems and Computing, 2017, , 189-201.	0.5	3
62	Siphon-based deadlock prevention for a class of S4PR generalized Petri nets. , 2017, , .		8
63	Re-scheduling of AGVs Steady State Flow. IFAC-PapersOnLine, 2017, 50, 3493-3498.	0.5	6
64	Designing Mass-Customized Network of Passenger Services Subject to Grid Topology Constraints. Advances in Intelligent Systems and Computing, 2017, , 120-131.	0.5	4
65	Declarative approach to DSS design for supervisory control of production orders portfolio. , 2016, , .		1
66	Production flows scheduling subject to fuzzy processing time constraints. International Journal of Computer Integrated Manufacturing, 2016, 29, 1105-1127.	2.9	41
67	Travel itinerary planning for fractal-like multimodal transportation networks. IFAC-PapersOnLine, 2016, 49, 1644-1649.	0.5	1
68	Multimodal processes optimization subject to fuzzy operation time constraints: declarative modeling approach. Frontiers of Information Technology and Electronic Engineering, 2016, 17, 338-347.	1,5	6
69	Robust Scheduling Subject to Multi-project Environment Constraints. Advances in Intelligent Systems and Computing, 2016, , 115-126.	0.5	2
70	Declarative Modeling Driven Approach to Production Orders Portfolio Prototyping. Intelligent Systems Reference Library, 2016, , 141-168.	1.0	2
71	Towards Cyclic Scheduling of Grid-Like Structure Networks. Advances in Intelligent Systems and Computing, 2016, , 13-27.	0.5	1
72	Modelling and Performance Evaluation of Fractal Topology Streets Network. Advances in Intelligent Systems and Computing, 2016, , 483-494.	0.5	5

#	Article	IF	CITATIONS
73	Multimodal processes scheduling in mesh-like network environment. Archives of Control Sciences, 2015, 25, 237-261.	1.7	7
74	Mass Customized Projects Portfolio Scheduling - Imprecise Operations Time Approach. Applied Mechanics and Materials, 2015, 791, 70-80.	0.2	6
75	Multiple Project Portfolio Scheduling Subject to Mass Customized Service. Advances in Intelligent Systems and Computing, 2015, , 11-21.	0.5	7
76	Multimodal processes prototyping subject to fuzzy operation time constraints. IFAC-PapersOnLine, 2015, 48, 2103-2108.	0.5	8
77	Cyclic Scheduling of Multimodal Processes in Crystalline-like Network Structures. Procedia Computer Science, 2014, 35, 1567-1576.	1.2	1
78	Introduction to the special issue on research advances for next-generation production systems. Production and Manufacturing Research, 2014, 2, 674-675.	0.9	1
79	Iterative multimodal processes scheduling. Annual Reviews in Control, 2014, 38, 113-122.	4.4	30
80	Automated guided vehicles fleet match-up scheduling with production flow constraints. Engineering Applications of Artificial Intelligence, 2014, 30, 49-62.	4.3	44
81	Declarative Modeling for Production Order Portfolio Scheduling. Foundations of Management, 2014, 6, 7-24.	0.2	8
82	Cyclic Scheduling of Multimodal Concurrently Flowing Processes. Advances in Intelligent Systems and Computing, 2014, , 587-598.	0.5	4
83	Reachability Modeling for Multimodal Networks Prototyping. Advances in Intelligent Systems and Computing, 2014, , 1-9.	0.5	3
84	Declarative approach to cyclic steady state space refinement: periodic process scheduling. International Journal of Advanced Manufacturing Technology, 2013, 67, 137-155.	1.5	58
85	Declarative Approach to AGVS Modeling and Cyclic Scheduling. Applied Mechanics and Materials, 2013, 421, 573-578.	0.2	0
86	Multimodal Processes Rescheduling: Cyclic Steady States Space Approach. Mathematical Problems in Engineering, 2013, 2013, 1-24.	0.6	14
87	Cyclic scheduling of multimodal processes in mesh-like environment. , 2013, , .		1
88	Declarative Approach to Cyclic Scheduling of Multimodal Processes. Ecoproduction, 2013, , 203-235.	0.8	9
89	CP-driven Production Process Planning in Multiproject Environment. Decision Making in Manufacturing and Services, 2013, 2, 5-32.	0.2	4
90	Research Framework for Studying Driver Distraction on Polish City Highways. Management and Production Engineering Review, 2013, 4, .	1.4	1

#	Article	IF	CITATIONS
91	Multimodal Processes Rescheduling. IFIP Advances in Information and Communication Technology, 2013, , 534-541.	0.5	1
92	Cyclic Scheduling for Supply Chain Network. Advances in Intelligent and Soft Computing, 2012, , 39-47.	0.2	9
93	A declarative approach to cyclic processes coupling and scheduling. , 2012, , .		0
94	Cyclic Steady State Refinement: Multimodal Processes Perspective. International Federation for Information Processing, 2012, , 18-26.	0.4	13
95	Reachability of Cyclic Steady States Space: Declarative Modeling Approach. Lecture Notes in Computer Science, 2012, , 233-243.	1.0	3
96	Rescheduling of Concurrently Flowing Cyclic Processes. Lecture Notes in Computer Science, 2012, , 212-222.	1.0	1
97	Declarative Modeling of Multimodal Cyclic Processes. Environmental Science and Engineering, 2011, , 551-566.	0.1	5
98	Toward Cyclic Scheduling of Concurrent Multimodal Processes. Lecture Notes in Computer Science, 2011, , 448-457.	1.0	5
99	Reference Model of Project Prototyping Problem. Foundations of Management, 2011, 3, 33-46.	0.2	5
100	Constraint programming for project-driven manufacturing. International Journal of Production Economics, 2009, 120, 463-475.	5.1	33
101	Decision support tool for resource allocation subject to imprecise data constraints. , 2009, , .		2
102	Logic-algebraic method based and constraints programming driven approach to AGVs scheduling. International Journal of Intelligent Information and Database Systems, 2009, 3, 56.	0.3	1
103	On Undecidability of Cyclic Scheduling Problems. Lecture Notes in Computer Science, 2009, , 310-321.	1.0	9
104	Abductive Reasoning Driven Approach to Project - Like Production Flow Prototyping. Foundations of Management, 2009, 1, 43-62.	0.2	1
105	Projects portfolio prototyping. , 2008, , .		0
106	Knowledge Based Approach to Project Prototyping. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2008, 41, 1845-1850.	0.4	0
107	Constraint Programming Approach to Time-Window and Multiresource-Constrained Projects Portfolio Prototyping. Lecture Notes in Computer Science, 2008, , 767-776.	1.0	9

Agvs Distributed Control Subject to Imprecise Operation Times. , 2008, , 421-430.

#	Article	IF	CITATIONS
109	Design of Admissible Schedules for AGV Systems with Constraints: A Logic-Algebraic Approach. Lecture Notes in Computer Science, 2007, , 578-587.	1.0	27
110	Towards Interactive CLP – Based and Project Driven Oriented DSS Design. , 2007, , 351-358.		0
111	Knowledge–Based and CP–Driven Methodology for Dedicated DSS Design. , 2007, , 441-448.		0
112	Knowledge Engineering Approach to Concurrently Competng Cyclic Processes Control. , 2006, , .		2
113	Project-driven planning and scheduling support for virtual manufacturing. Journal of Intelligent Manufacturing, 2006, 17, 641-651.	4.4	17
114	Automated Vehicles' Work Planning in Flexible Manufacturing Systems. , 2006, , .		1
115	Decision Support Systems Based on CLP Approach in SMEs. , 2006, , .		1
116	Knowledge-based and CP-driven methodology for dedicated DSS design. , 2006, , .		0
117	CP-Based Decision Support for Project Driven Manufacturing. , 2006, , 409-437.		12
118	Concurrent Processes Flow Prototyping. , 2005, , 87-100.		3
119	Modelling of distributed control for repetitive production flow prototyping. International Journal of Computer Integrated Manufacturing, 2005, 18, 386-394.	2.9	4
120	Computer-aided prototyping of production flows for a virtual enterprise. Journal of Intelligent Manufacturing, 2003, 14, 83-106.	4.4	14
121	Workflows Management for Project-Driven Manufacturing. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2003, 36, 149-154.	0.4	1
122	Rapid Prototyping of Robust Distributed Control for Repetitive Manufacturing. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2000, 33, 799-804.	0.4	0
123	Logistics models in flexible manufacturing. Computers in Industry, 2000, 43, 237-248.	5.7	26
124	Design of steady-state behavior of concurrent repetitive processes: an algebraic approach. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 1998, 28, 199-212.	3.4	18
125	A max-algebra approach to the robust distributed control of repetitive AGV systems. International Journal of Production Research, 1997, 35, 2667-2688.	4.9	11
126	Distributed bottleneck control for repetitive production systems. Journal of Intelligent Manufacturing, 1997, 8, 415-424.	4.4	9

#	Article	IF	CITATIONS
127	Performance Evaluation for Concurrent Processing in Cyclic Systems. Concurrent Engineering Research and Applications, 1995, 3, 123-130.	2.0	11
128	Modeling and control of deadlocks in a flexible machining cell. , 1993, , .		0
129	Deadlock avoidance in flexible manufacturing systems with concurrently competing process flows. IEEE Transactions on Automation Science and Engineering, 1990, 6, 724-734.	2.4	482
130	A Synthesis Method for Petri Net with Prescribed Firing Sequence. Transactions of the Society of Instrument and Control Engineers, 1985, 21, 277-283.	0.1	1
131	Deadlock-free distributed control for repetitive flows. , 0, , .		2
132	Prototyping of distributed control procedures in concurrent cyclic processes systems. , 0, , .		1
133	Periodic distributed delivery routes planning subject to operation uncertainty of vehicles travelling in a convoy. Journal of Information and Telecommunication, 0, , 1-21.	2.2	0