Aamod V Desai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1062126/publications.pdf

Version: 2024-02-01

68 papers 7,785 citations

39 h-index 106340 65 g-index

70 all docs

70 docs citations

70 times ranked

7536 citing authors

#	Article	IF	CITATIONS
1	Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chemical Society Reviews, 2017, 46, 3242-3285.	38.1	2,457
2	A fluorescent metal–organic framework for highly selective detection of nitro explosives in the aqueous phase. Chemical Communications, 2014, 50, 8915-8918.	4.1	486
3	Hydrogenâ∈Bonded Organic Frameworks (HOFs): A New Class of Porous Crystalline Protonâ€Conducting Materials. Angewandte Chemie - International Edition, 2016, 55, 10667-10671.	13.8	334
4	A Waterâ€Stable Cationic Metal–Organic Framework as a Dual Adsorbent of Oxoanion Pollutants. Angewandte Chemie - International Edition, 2016, 55, 7811-7815.	13.8	302
5	Selective and Sensitive Aqueousâ€Phase Detection of 2,4,6â€Trinitrophenol (TNP) by an Amineâ€Functionalized Metal–Organic Framework. Chemistry - A European Journal, 2015, 21, 965-969.	3.3	297
6	lonic metal-organic frameworks (iMOFs): Design principles and applications. Coordination Chemistry Reviews, 2016, 307, 313-341.	18.8	261
7	Guest-Responsive Metal–Organic Frameworks as Scaffolds for Separation and Sensing Applications. Accounts of Chemical Research, 2017, 50, 2457-2469.	15.6	241
8	Engineering metal–organic frameworks for aqueous phase 2,4,6-trinitrophenol (TNP) sensing. CrystEngComm, 2016, 18, 2994-3007.	2.6	189
9	Advanced Porous Materials for Sensing, Capture and Detoxification of Organic Pollutants toward Water Remediation. ACS Sustainable Chemistry and Engineering, 2019, 7, 7456-7478.	6.7	189
10	Aqueous phase selective detection of 2,4,6-trinitrophenol using a fluorescent metal–organic framework with a pendant recognition site. Dalton Transactions, 2015, 44, 15175-15180.	3.3	161
11	Exploitation of Guest Accessible Aliphatic Amine Functionality of a Metal–Organic Framework for Selective Detection of 2,4,6-Trinitrophenol (TNP) in Water. Crystal Growth and Design, 2015, 15, 4627-4634.	3.0	137
12	Selective Recognition of Hg ²⁺ ion in Water by a Functionalized Metal–Organic Framework (MOF) Based Chemodosimeter. Inorganic Chemistry, 2018, 57, 2360-2364.	4.0	131
13	2021 roadmap for sodium-ion batteries. JPhys Energy, 2021, 3, 031503.	5. 3	125
14	Stimulusâ€Responsive Metal–Organic Frameworks. Chemistry - an Asian Journal, 2014, 9, 2358-2376.	3.3	109
15	Metal-organic framework based highly selective fluorescence turn-on probe for hydrogen sulphide. Scientific Reports, 2014, 4, 7053.	3. 3	109
16	Potential of metal–organic frameworks for adsorptive separation of industrially and environmentally relevant liquid mixtures. Coordination Chemistry Reviews, 2018, 367, 82-126.	18.8	105
17	Ultrastable Luminescent Hybrid Bromide Perovskite@MOF Nanocomposites for the Degradation of Organic Pollutants in Water. ACS Applied Nano Materials, 2019, 2, 1333-1340.	5.0	102
18	N-donor linker based metal-organic frameworks (MOFs): Advancement and prospects as functional materials. Coordination Chemistry Reviews, 2019, 395, 146-192.	18.8	98

#	Article	IF	Citations
19	A Nitroâ€Functionalized Metal–Organic Framework as a Reactionâ€Based Fluorescence Turnâ€On Probe for Rapid and Selective H ₂ S Detection. Chemistry - A European Journal, 2015, 21, 9994-9997.	3.3	93
20	An Ultrahydrophobic Fluorous Metal–Organic Framework Derived Recyclable Composite as a Promising Platform to Tackle Marine Oil Spills. Chemistry - A European Journal, 2016, 22, 10937-10943.	3.3	91
21	A Postâ€Synthetically Modified MOF for Selective and Sensitive Aqueousâ€Phase Detection of Highly Toxic Cyanide Ions. Chemistry - A European Journal, 2016, 22, 864-868.	3.3	91
22	Chemically stable ionic viologen-organic network: an efficient scavenger of toxic oxo-anions from water. Chemical Science, 2018, 9, 7874-7881.	7.4	91
23	Aqueous phase nitric oxide detection by an amine-decorated metal–organic framework. Chemical Communications, 2015, 51, 6111-6114.	4.1	83
24	Framework-Flexibility Driven Selective Sorption of p-Xylene over Other Isomers by a Dynamic Metal-Organic Framework. Scientific Reports, 2014, 4, 5761.	3.3	81
25	A Waterâ€Stable Ionic MOF for the Selective Capture of Toxic Oxoanions of Se ^{VI} and As ^V and Crystallographic Insight into the Ionâ€Exchange Mechanism. Angewandte Chemie - International Edition, 2020, 59, 7788-7792.	13.8	79
26	Harnessing Lewis acidic open metal sites of metal–organic frameworks: the foremost route to achieve highly selective benzene sorption over cyclohexane. Chemical Communications, 2016, 52, 8215-8218.	4.1	76
27	Hydrogenâ€Bonded Organic Frameworks (HOFs): A New Class of Porous Crystalline Protonâ€Conducting Materials. Angewandte Chemie, 2016, 128, 10825-10829.	2.0	76
28	Neutral N-donor ligand based flexible metal–organic frameworks. Dalton Transactions, 2016, 45, 4060-4072.	3.3	73
29	Selective Detection of 2,4,6-Trinitrophenol (TNP) by a π-Stacked Organic Crystalline Solid in Water. Crystal Growth and Design, 2015, 15, 3493-3497.	3.0	70
30	A π-electron deficient diaminotriazine functionalized MOF for selective sorption of benzene over cyclohexane. Chemical Communications, 2015, 51, 15386-15389.	4.1	64
31	A Waterâ€Stable Cationic Metal–Organic Framework as a Dual Adsorbent of Oxoanion Pollutants. Angewandte Chemie, 2016, 128, 7942-7946.	2.0	59
32	An Amideâ€Functionalized Dynamic Metal–Organic Framework Exhibiting Visual Colorimetric Anion Exchange and Selective Uptake of Benzene over Cyclohexane. Chemistry - A European Journal, 2015, 21, 7071-7076.	3.3	56
33	Aqueous phase sensing of cyanide ions using a hydrolytically stable metal–organic framework. Chemical Communications, 2017, 53, 1253-1256.	4.1	56
34	Advances in Organic Anode Materials for Naâ€∤Kâ€∤on Rechargeable Batteries. ChemSusChem, 2020, 13, 4866-4884.	6.8	55
35	Selective Anion Exchange and Tunable Luminescent Behaviors of Metal–Organic Framework Based Supramolecular Isomers. Inorganic Chemistry, 2015, 54, 110-116.	4.0	53
36	Exploiting Framework Flexibility of a Metal–Organic Framework for Selective Adsorption of Styrene over Ethylbenzene. Inorganic Chemistry, 2015, 54, 4403-4408.	4.0	50

3

#	Article	IF	Citations
37	Base-Resistant Ionic Metal-Organic Framework as a Porous Ion-Exchange Sorbent. IScience, 2018, 3, 21-30.	4.1	50
38	Hydrophobic Shielding of Outer Surface: Enhancing the Chemical Stability of Metal–Organic Polyhedra. Angewandte Chemie - International Edition, 2019, 58, 1041-1045.	13.8	45
39	Guestâ€Responsive Function of a Dynamic Metal–Organic Framework with a Ï€ Lewis Acidic Pore Surface. Chemistry - A European Journal, 2014, 20, 15303-15308.	3.3	43
40	Rapid, selective capture of toxic oxo-anions of Se(<scp>iv< scp>), Se(<scp>vi< scp>) and As(<scp>v< scp>) from water by an ionic metal–organic framework (iMOF). Journal of Materials Chemistry A, 2021, 9, 6499-6507.</scp></scp></scp>	10.3	39
41	Enhanced proton conduction by post-synthetic covalent modification in a porous covalent framework. Journal of Materials Chemistry A, 2017, 5, 13659-13664.	10.3	38
42	Dynamic Metal–Organic Framework with Anion-Triggered Luminescence Modulation Behavior. Inorganic Chemistry, 2014, 53, 12225-12227.	4.0	37
43	Bimodal Functionality in a Porous Covalent Triazine Framework by Rational Integration of an Electronâ€Rich and â€Deficient Pore Surface. Chemistry - A European Journal, 2016, 22, 4931-4937.	3.3	36
44	Chemically stable microporous hyper-cross-linked polymer (HCP): an efficient selective cationic dye scavenger from an aqueous medium. Materials Chemistry Frontiers, 2017, 1, 1384-1388.	5.9	34
45	Polar Pore Surface Guided Selective CO ₂ Adsorption in a Prefunctionalized Metalâ€"Organic Framework. Crystal Growth and Design, 2017, 17, 3581-3587.	3.0	34
46	High hydroxide conductivity in a chemically stable crystalline metal–organic framework containing a water-hydroxide supramolecular chain. Chemical Communications, 2016, 52, 8459-8462.	4.1	32
47	Anionâ€Responsive Tunable Bulkâ€Phase Homochirality and Luminescence of a Cationic Framework. Chemistry - A European Journal, 2014, 20, 12399-12404.	3.3	31
48	A luminescent cationic MOF for bimodal recognition of chromium and arsenic based oxo-anions in water. Dalton Transactions, 2021, 50, 10133-10141.	3.3	25
49	Probing the Role of Anions in Influencing the Structure, Stability, and Properties in Neutral N-Donor Linker Based Metal–Organic Frameworks. Crystal Growth and Design, 2019, 19, 7046-7054.	3.0	23
50	Efficient Capture of Trace Acetylene by an Ultramicroporous Metal–Organic Framework with Purine Binding Sites. Chemistry of Materials, 2021, 33, 5800-5808.	6.7	22
51	Single-crystal-to-single-crystal transformation of an anion exchangeable dynamic metal–organic framework. CrystEngComm, 2015, 17, 8796-8800.	2.6	20
52	Multifunctional Behavior of Sulfonate-Based Hydrolytically Stable Microporous Metal–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2018, 10, 39049-39055.	8.0	18
53	Post-synthetically modified metal–organic framework as a scaffold for selective bisulphite recognition in water. Polyhedron, 2018, 156, 1-5.	2.2	17
54	Coherent Fusion of Water Array and Protonated Amine in a Metal–Sulfate-Based Coordination Polymer for Proton Conduction. Inorganic Chemistry, 2015, 54, 5366-5371.	4.0	16

#	Article	IF	CITATIONS
55	A Waterâ€Stable Ionic MOF for the Selective Capture of Toxic Oxoanions of Se VI and As V and Crystallographic Insight into the Ionâ€Exchange Mechanism. Angewandte Chemie, 2020, 132, 7862-7866.	2.0	13
56	A Bifunctional Metal–Organic Framework: Striking CO ₂ â€Selective Sorption Features along with Guestâ€Induced Tuning of Luminescence. ChemPlusChem, 2016, 81, 702-707.	2.8	12
57	Toxic Aromatics Induced Responsive Facets for a Pore Surface Functionalized Luminescent Coordination Polymer. Inorganic Chemistry, 2017, 56, 6864-6869.	4.0	10
58	Conversion of a microwave synthesized alkali-metal MOF to a carbonaceous anode for Li-ion batteries. RSC Advances, 2020, 10, 13732-13736.	3.6	10
59	Hydrophobic Shielding of Outer Surface: Enhancing the Chemical Stability of Metal–Organic Polyhedra. Angewandte Chemie, 2019, 131, 1053-1057.	2.0	8
60	Specific recognition of toxic allyl alcohol by pore-functionalized metal–organic frameworks. Molecular Systems Design and Engineering, 2020, 5, 469-476.	3.4	8
61	Mechanochemical synthesis of sodium carboxylates as anode materials in sodium ion batteries. Journal of Materials Chemistry A, 2021, 9, 27361-27369.	10.3	7
62	Solvothermal Synthesis of a Novel Calcium Metal-Organic Framework: High Temperature and Electrochemical Behaviour. Molecules, 2021, 26, 7048.	3.8	7
63	Rapid Microwaveâ€Assisted Synthesis and Electrode Optimization of Organic Anode Materials in Sodiumâ€Ion Batteries. Small Methods, 2021, 5, e2101016.	8.6	7
64	Metal-organic frameworks for recognition and sequestration of toxic anionic pollutants. , 2019, , 95-140.		6
65	Synthesis and structural elucidation of neutral N-donor linker based bi-porous isostructural cationic metal-organic frameworks. Inorganica Chimica Acta, 2019, 486, 401-405.	2.4	3
66	A structural investigation of organic battery anode materials by NMR crystallography. Magnetic Resonance in Chemistry, 2022, 60, 489-503.	1.9	3
67	Ultrahigh Ionic Conduction in Water-Stable Close-Packed Metal-Carbonate Frameworks. Inorganic Chemistry, 2017, 56, 9710-9715.	4.0	1
68	Post-synthetically modified porous covalent framework (PCF) for high proton conduction. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C1156-C1156.	0.1	O