Abbas Sabahi Namini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10620709/publications.pdf

Version: 2024-02-01

84 papers 3,380 citations

36 h-index 55 g-index

86 all docs 86 docs citations

86 times ranked 1159 citing authors

#	Article	IF	CITATIONS
1	An interfacial survey on microstructure of ZrB2-based ceramics codoped with carbon fibers and SiC whiskers. Materials Chemistry and Physics, 2022, 275, 125322.	4.0	5
2	HRTEM study and mechanical properties of ZrB2–SiC composite: An insight into in-situ carbon formation over the SPS process. International Journal of Refractory Metals and Hard Materials, 2022, 104, 105789.	3.8	9
3	Microstructure of spark plasma sintered TiC–TiB2–SiCw composite. Materials Chemistry and Physics, 2022, 281, 125877.	4.0	8
4	Nanoindentation and TEM investigation of spark plasma sintered TiB2–SiC composite. Ceramics International, 2022, 48, 20285-20293.	4.8	4
5	HRTEM and XPS characterizations for probable formation of TiBxNy solid solution during sintering process of TiB2–20SiC–5Si3N4 composite. Materials Chemistry and Physics, 2022, 288, 126380.	4.0	2
6	Microstructural evolution of TiB2–SiC composites empowered with Si3N4, BN or TiN: A comparative study. Ceramics International, 2021, 47, 1002-1011.	4.8	10
7	In situ preparation of g-C3N4 nanosheet/FeOCl: Achievement and promoted photocatalytic nitrogen fixation activity. Journal of Colloid and Interface Science, 2021, 587, 538-549.	9.4	59
8	Post hot rolling of spark plasma sintered Ti–Mo–B4C composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 799, 140214.	5.6	10
9	The effect of cadmium impurities in the (PVP–TeO2) interlayer in Al/p-Si (MS) Schottky barrier diodes (SBDs): Exploring its electrophysical parameters. Physica B: Condensed Matter, 2021, 604, 412617.	2.7	18
10	ZrB2SiCw composites with different carbonaceous additives. International Journal of Refractory Metals and Hard Materials, 2021, 95, 105457.	3.8	5
11	Effects of discrete and simultaneous addition of SiC and Si3N4 on microstructural development of TiB2 ceramics. Ceramics International, 2021, 47, 3520-3528.	4.8	9
12	Microstructure–property correlation in nano-diamond and TiN added TiC-based ceramics. Ceramics International, 2021, 47, 449-460.	4.8	10
13	Characterization of spark plasma sintered TiC–Si3N4 ceramics. International Journal of Refractory Metals and Hard Materials, 2021, 95, 105444.	3.8	18
14	Effects of SiC on densification, microstructure and nano-indentation properties of ZrB2–BN composites. Ceramics International, 2021, 47, 9873-9880.	4.8	12
15	Influence of Sintering Temperature on Microstructure and Mechanical Properties of Ti–Mo–B4C Composites. Metals and Materials International, 2021, 27, 1092-1102.	3.4	57
16	High-impressive separation of photoinduced charge carriers on step-scheme ZnO/ZnSnO3/Carbon dots heterojunction with efficient activity in photocatalytic NH3 production. Journal of the Taiwan Institute of Chemical Engineers, 2021, 118, 140-151.	5.3	32
17	A TEM study on the microstructure of spark plasma sintered ZrB2-based composite with nano-sized SiC dopant. Progress in Natural Science: Materials International, 2021, 31, 47-54.	4.4	7
18	Characterization of reactive spark plasma sintered (Zr,Ti)B2–ZrC–SiC composites. Journal of the Taiwan Institute of Chemical Engineers, 2021, 119, 187-195.	5.3	14

#	Article	IF	Citations
19	Microstructural evolution during spark plasma sintering of TiC–AlN–graphene ceramics. International Journal of Refractory Metals and Hard Materials, 2021, 96, 105496.	3.8	2
20	A survey on spark plasma sinterability of CNT-added TiC ceramics. International Journal of Refractory Metals and Hard Materials, 2021, 96, 105471.	3.8	13
21	Spark plasma sinterability of TiC ceramics with different nitride additives. Journal of the Taiwan Institute of Chemical Engineers, 2021, , .	5.3	4
22	Combined role of SiC whiskers and graphene nano-platelets on the microstructure of spark plasma sintered ZrB2 ceramics. Ceramics International, 2021, 47, 12459-12466.	4.8	19
23	Synergistic effects of Si3N4 and CNT on densification and properties of TiC ceramics. Ceramics International, 2021, 47, 12941-12950.	4.8	10
24	Characterization of TiC ceramics with SiC and/or WC additives using electron microscopy and electron probe micro-analysis. Journal of the Taiwan Institute of Chemical Engineers, 2021, , .	5.3	9
25	Synthesis and characterization of novel ZnO/NiCr2O4 nanocomposite for water purification by degradation of tetracycline and phenol under visible light irradiation. Materials Research Bulletin, 2021, 139, 111247.	5.2	30
26	Effect of (Coâ€"TeO2-doped polyvinylpyrrolidone) organic interlayer on the electrophysical characteristics of Al/p-Si (MS) structures. Journal of Materials Science: Materials in Electronics, 2021, 32, 21909-21922.	2,2	16
27	Role of TiCN addition on the characteristics of reactive spark plasma sintered ZrB2-based novel composites. Journal of Alloys and Compounds, 2021, 875, 159901.	5.5	8
28	Combined role of SiC particles and SiC whiskers on the characteristics of spark plasma sintered ZrB2 ceramics. Ceramics International, 2020, 46, 5773-5778.	4.8	52
29	Nano-diamond reinforced ZrB2–SiC composites. Ceramics International, 2020, 46, 10172-10179.	4.8	62
30	Ti–TiB2 composites consolidated by spark plasma sintering: Reaction mechanism, characteristics of in-situ formed phases and densification behavior. Materials Chemistry and Physics, 2020, 242, 122556.	4.0	16
31	Triplet carbide composites of TiC, WC, and SiC. Ceramics International, 2020, 46, 9070-9078.	4.8	60
32	Influence of TiB2 content on the properties of TiC–SiCw composites. Ceramics International, 2020, 46, 7403-7412.	4.8	54
33	Nanoindentational and conventional mechanical properties of spark plasma sintered Ti–Mo alloys. Journal of Materials Research and Technology, 2020, 9, 10647-10658.	5.8	36
34	Role of hot-pressing temperature on densification and microstructure of ZrB2–SiC ultrahigh temperature ceramics. International Journal of Refractory Metals and Hard Materials, 2020, 93, 105355.	3.8	26
35	Electrical and dielectric properties of Al/(PVP: Zn-TeO2)/p-Si heterojunction structures using currentâ€"voltage (lâ€"V) and impedance-frequency (Zâ€"f) measurements. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	33
36	Role of co-addition of BN and SiC on microstructure of TiB2-based composites densified by SPS method. Ceramics International, 2020, 46, 25341-25350.	4.8	32

#	Article	IF	Citations
37	Electron microscopy characterization of porous ZrB2–SiC–AlN composites prepared by pressureless sintering. Ceramics International, 2020, 46, 25415-25423.	4.8	30
38	Microstructural, mechanical and friction properties of nano-graphite and h-BN added TiC-based composites. Ceramics International, 2020, 46, 28969-28979.	4.8	22
39	TEM characterization of hot-pressed ZrB2-SiC-AlN composites. Results in Physics, 2020, 19, 103348.	4.1	12
40	Electron microscopy study of ZrB2–SiC–AlN composites: Hot-pressing vs. pressureless sintering. Ceramics International, 2020, 46, 29334-29338.	4.8	22
41	A novel TiC-based composite co-strengthened with AlN particulates and graphene nano-platelets. International Journal of Refractory Metals and Hard Materials, 2020, 92, 105331.	3.8	25
42	On the electrical characteristics of Al/p-Si diodes with and without (PVP: Sn-TeO2) interlayer using current–voltage (l–V) measurements. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	14
43	Novel p–n Heterojunction Nanocomposite: TiO ₂ QDs/ZnBi ₂ O ₄ Photocatalyst with Considerably Enhanced Photocatalytic Activity under Visible-Light Irradiation. Journal of Physical Chemistry C, 2020, 124, 27519-27528.	3.1	54
44	Synthesis, characterization, and photocatalytic performance of Ag/AgFeO2 decorated on g-C3N4-nanosheet under the visible light irradiation. Journal of the Taiwan Institute of Chemical Engineers, 2020, 115, 279-292.	5. 3	35
45	A novel spark plasma sintered TiC–ZrN–C composite with enhanced flexural strength. Ceramics International, 2020, 46, 29022-29032.	4.8	19
46	Electron microscopy investigation of spark plasma sintered ZrO2 added ZrB2–SiC composite. Ceramics International, 2020, 46, 19646-19649.	4.8	66
47	Enhanced densification of spark plasma sintered TiB2 ceramics with low content AlN additive. Ceramics International, 2020, 46, 22127-22133.	4.8	33
48	Densification behavior and microstructure development in TiB2 ceramics doped with h-BN. Ceramics International, 2020, 46, 18970-18975.	4.8	56
49	A microstructural approach to the chemical reactions during the spark plasma sintering of novel TiC–BN ceramics. Ceramics International, 2020, 46, 15982-15990.	4.8	42
50	Effect of B4C content on sintering behavior, microstructure and mechanical properties of Ti-based composites fabricated via spark plasma sintering. Materials Chemistry and Physics, 2020, 251, 123087.	4.0	44
51	Physical, mechanical and microstructural characterization of TiC–ZrN ceramics. Ceramics International, 2020, 46, 22154-22163.	4.8	30
52	Beneficial role of carbon black on the properties of TiC ceramics. Ceramics International, 2020, 46, 23544-23555.	4.8	35
53	Enhanced fracture toughness of ZrB2–SiCw ceramics with graphene nano-platelets. Ceramics International, 2020, 46, 24906-24915.	4.8	43
54	Strengthening of novel TiC–AlN ceramic with in-situ synthesized Ti3Al intermetallic compound. Ceramics International, 2020, 46, 14105-14113.	4.8	53

#	Article	IF	CITATIONS
55	On the simulation of spark plasma sintered TiB2 ultra high temperature ceramics: A numerical approach. Ceramics International, 2020, 46, 14787-14795.	4.8	56
56	Role of graphite nano-flakes on the characteristics of ZrB2-based composites reinforced with SiC whiskers. Diamond and Related Materials, 2020, 105, 107786.	3.9	57
57	Strengthening of TiC ceramics sintered by spark plasma via nano-graphite addition. Ceramics International, 2020, 46, 12400-12408.	4.8	66
58	Aluminum nitride as an alternative ceramic for fabrication of microchannel heat exchangers: A numerical study. Ceramics International, 2020, 46, 11647-11657.	4.8	75
59	Influence of SPS temperature on the properties of TiC–SiCw composites. Ceramics International, 2020, 46, 11735-11742.	4.8	30
60	Characterization of triplet Ti–TiB–TiC composites: Comparison of in-situ formation and ex-situ addition of TiC. Ceramics International, 2020, 46, 11726-11734.	4.8	67
61	Microstructural and mechanical characterization of spark plasma sintered TiC ceramics with TiN additive. Ceramics International, 2020, 46, 18924-18932.	4.8	45
62	Characterization of spark plasma sintered TiC ceramics reinforced with graphene nano-platelets. Ceramics International, 2020, 46, 18742-18749.	4.8	48
63	Role of nano-WC addition on microstructural, mechanical and thermal characteristics of TiC–SiCw composites. International Journal of Refractory Metals and Hard Materials, 2020, 90, 105248.	3.8	59
64	Role of nano-diamond addition on the characteristics of spark plasma sintered TiC ceramics. Diamond and Related Materials, 2020, 106, 107828.	3.9	49
65	Influence of SiAlON addition on the microstructure development of hot-pressed ZrB2–SiC composites. Ceramics International, 2020, 46, 19209-19216.	4.8	58
66	Characteristics of quadruplet Ti–Mo–TiB2–TiC composites prepared by spark plasma sintering. Ceramics International, 2020, 46, 20885-20895.	4.8	36
67	Cerium oxide nanoparticles as a new neuroprotective agent to promote functional recovery in a rat model of sciatic nerve crush injury. British Journal of Neurosurgery, 2020, , 1-6.	0.8	17
68	Hybrid Ti matrix composites with TiB2 and TiC compounds. Materials Today Communications, 2019, 20, 100576.	1.9	76
69	Spark plasma sintering of TiC–SiCw ceramics. Ceramics International, 2019, 45, 19808-19821.	4.8	88
70	Relationship between pore coarsening and mass loss during supersolidus liquid phase sintering of alpha brass. Powder Metallurgy, 2019, 62, 331-339.	1.7	5
71	Spark plasma sintering of ZrB2-based composites co-reinforced with SiC whiskers and pulverized carbon fibers. International Journal of Refractory Metals and Hard Materials, 2019, 83, 104989.	3.8	65
72	Effect of TiB2 addition on the elevated temperature tribological behavior of spark plasma sintered Ti matrix composite. Composites Part B: Engineering, 2019, 172, 271-280.	12.0	107

#	Article	IF	CITATIONS
73	Microstructure and thermomechanical characteristics of spark plasma sintered TiC ceramics doped with nano-sized WC. Ceramics International, 2019, 45, 2153-2160.	4.8	107
74	Microstructure–mechanical properties correlation in spark plasma sintered Ti–4.8Âwt.% TiB2 composites. Materials Chemistry and Physics, 2019, 223, 789-796.	4.0	76
75	Effects of sintering temperature on microstructure and mechanical properties of spark plasma sintered titanium. Materials Chemistry and Physics, 2018, 203, 266-273.	4.0	95
76	On the physical and mechanical properties of spark plasma sintered pure Ti and Ti-TiB composite. Materials Research Express, 2018, 5, 126512.	1.6	14
77	Effects of spark plasma sintering temperature on densification, hardness and thermal conductivity of titanium carbide. Ceramics International, 2018, 44, 14541-14546.	4.8	122
78	Reinforcing effects of SiC whiskers and carbon nanoparticles in spark plasma sintered ZrB2 matrix composites. Ceramics International, 2018, 44, 19932-19938.	4.8	85
79	Effect of TiB 2 content on the characteristics of spark plasma sintered Ti–TiB w composites. Advanced Powder Technology, 2017, 28, 1564-1572.	4.1	111
80	Characterization of hot pressed SiC whisker reinforced TiB 2 based composites. International Journal of Refractory Metals and Hard Materials, 2016, 61, 84-90.	3.8	96
81	Liquid Phase Sintering of Leaded Tin Bronze Alloyed Powder. Transactions of the Indian Institute of Metals, 2016, 69, 1377-1388.	1.5	10
82	Influence of silicon carbide addition on the microstructural development of hot pressed zirconium and titanium diborides. Ceramics International, 2016, 42, 5375-5381.	4.8	95
83	Microstructural development and mechanical properties of hot pressed SiC reinforced TiB2 based composite. International Journal of Refractory Metals and Hard Materials, 2015, 51, 169-179.	3.8	120
84	Effect of iron nanoparticles on spark plasma sinterability of ZrB2-based ceramics. Journal of the Australian Ceramic Society, 0, , .	1.9	2