Tetsuo Tamada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1062022/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pathogenetic roles of beet necrotic yellow vein virus RNA5 in the exacerbation of symptoms and yield reduction, development of scabâ€like symptoms, and <i>Rz1</i> â€resistance breaking in sugar beet. Plant Pathology, 2021, 70, 219-232.	2.4	9
2	ldentification of a Novel Quinvirus in the Family Betaflexiviridae That Infects Winter Wheat. Frontiers in Microbiology, 2021, 12, 715545.	3.5	7
3	Host range and molecular analysis of <i>Beet leaf yellowing virus</i> , <i> Beet western yellows virus</i> â€ <scp>JP</scp> and <i>Brassica yellows virus</i> in Japan. Plant Pathology, 2019, 68, 1045-1058.	2.4	22
4	Genetic Diversity of Beet Necrotic Yellow Vein Virus. , 2016, , 109-131.		5
5	General Features of Beet Necrotic Yellow Vein Virus. , 2016, , 55-83.		12
6	The Plasmodiophorid Protist Polymyxa betae. , 2016, , 135-153.		9
7	Differential contributions of plant Dicerâ€like proteins to antiviral defences against potato virus X in leaves and roots. Plant Journal, 2015, 81, 781-793.	5.7	51
8	Characterization of burdock mottle virus, a novel member of the genus Benyvirus, and the identification of benyvirus-related sequences in the plant and insect genomes. Virus Research, 2013, 177, 75-86.	2.2	31
9	Biological and genetic diversity of plasmodiophorid-transmitted viruses and their vectors. Journal of General Plant Pathology, 2013, 79, 307-320.	1.0	58
10	The cysteine-rich proteins of beet necrotic yellow vein virus and tobacco rattle virus contribute to efficient suppression of silencing in roots. Journal of General Virology, 2012, 93, 1841-1850.	2.9	37
11	The Evolutionary History of <i>Beet necrotic yellow vein virus</i> Deduced from Genetic Variation, Geographical Origin and Spread, and the Breaking of Host Resistance. Molecular Plant-Microbe Interactions, 2011, 24, 207-218.	2.6	64
12	The enigmatic genome of Chara australis virus. Journal of General Virology, 2011, 92, 2679-2690.	2.9	30
13	Identification and characterization of structural proteins of orchid fleck virus. Archives of Virology, 2009, 154, 37-45.	2.1	22
14	Identification of amino acids of the beet necrotic yellow vein virus p25 protein required for induction of the resistance response in leaves of Beta vulgaris plants. Journal of General Virology, 2008, 89, 1314-1323.	2.9	57
15	RNA4-encoded p31 of beet necrotic yellow vein virus is involved in efficient vector transmission, symptom severity and silencing suppression in roots. Journal of General Virology, 2007, 88, 1611-1619.	2.9	70
16	Susceptibility and resistance of Beta vulgaris subsp. maritima to foliar rub-inoculation with Beet necrotic yellow vein virus. Journal of General Plant Pathology, 2007, 73, 76-80.	1.0	14
17	Lower Levels of Transgene Silencing in Roots is Associated with Reduced DNA Methylation Levels at Non-Symmetrical Sites but not at Symmetrical Sites. Plant Molecular Biology, 2006, 60, 423-435.	3.9	19
18	Orchid fleck virus is a rhabdovirus with an unusual bipartite genome. Journal of General Virology, 2006, 87, 2413-2421.	2.9	92

Tetsuo Tamada

#	Article	IF	CITATIONS
19	Evidence That RNA Silencing-Mediated Resistance to Beet necrotic yellow vein virus Is Less Effective in Roots Than in Leaves. Molecular Plant-Microbe Interactions, 2005, 18, 194-204.	2.6	98
20	Evidence for three groups of sequence variants of beet necrotic yellow vein virus RNA 5. Archives of Virology, 1999, 144, 879-892.	2.1	59
21	RNA 3 Deletion Mutants of Beet Necrotic Yellow Vein Virus Do Not Cause Rhizomania Disease in Sugar Beets. Phytopathology, 1999, 89, 1000-1006.	2.2	83
22	BENYVIRUSES. , 1999, , 154-160.		37
23	Vascular movement of beet necrotic yellow vein virus in Beta macrocarpa is probably dependent on an RNA 3 sequence domain rather than a gene product Journal of General Virology, 1998, 79, 385-393.	2.9	58
24	Identification of a New Wheat Yellow Mosaic Virus Strain with Specific Pathogenicity towards Major Wheat Cultivars Grown in Hokkaido Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 1997, 63, 107-109.	0.1	19
25	Complete nucleotide sequence of the Japanese isolate S of beet necrotic yellow vein virus RNA and comparison with European isolates. Archives of Virology, 1996, 141, 2163-2175.	2.1	39
26	High resolution analysis of the readthrough domain of beet necrotic yellow vein virus readthrough protein: a KTER motif is important for efficient transmission of the virus by Polymyxa betae. Journal of General Virology, 1996, 77, 1359-1367.	2.9	95
27	Nucleotide sequence analysis of RNA-5 of five isolates of beet necrotic yellow vein virus and the identity of a deletion mutant. Journal of General Virology, 1996, 77, 575-580.	2.9	38
28	Mapping Functions on the Multipartite Genome of Beet Necrotic Yellow Vein Virus. Annual Review of Phytopathology, 1992, 30, 291-313.	7.8	96
29	Production and Pathogenicity of Isolates of Beet Necrotic Yellow Vein Virus with Different Numbers of RNA Components. Journal of General Virology, 1989, 70, 3399-3409.	2.9	116
30	Evidence that Beet Necrotic Yellow Vein Virus RNA-4 Is Essential for Efficient Transmission by the Fungus Polymyxa betae. Journal of General Virology, 1989, 70, 3391-3398.	2.9	103
31	Association of beet necrotic yellow vein virus with isolates of Polymyxa betae Keskin Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 1986, 52, 235-247.	0.1	104
32	Beet Necrotic Yellow Vein Virus from Rizomania-Affected Sugar Beet in Japan. Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 1973, 39, 325-332_1.	0.1	96
33	Epidemic progress of beet necrotic yellow vein virus: evidence from an investigation in Japan spanning half a century. Plant Pathology, 0, , .	2.4	5