Thomas A Spies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10620080/publications.pdf Version: 2024-02-01

THOMAS & SDIES

#	Article	IF	CITATIONS
1	Climate and wildfire adaptation of inland Northwest US forests. Frontiers in Ecology and the Environment, 2022, 20, 40-48.	4.0	10
2	Effects of ownership patterns on cross-boundary wildfires. Scientific Reports, 2021, 11, 19319.	3.3	4
3	Fire Ecology and Management in Pacific Northwest Forests. Managing Forest Ecosystems, 2021, , 393-435.	0.9	9
4	Climate, Environment, and Disturbance History Govern Resilience of Western North American Forests. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	174
5	ls fire "for the birds� How two rare species influence fire management across the <scp>US</scp> . Frontiers in Ecology and the Environment, 2019, 17, 391-399.	4.0	40
6	Twentyâ€five years of the Northwest Forest Plan: what have we learned?. Frontiers in Ecology and the Environment, 2019, 17, 511-520.	4.0	53
7	Use of Science and Modeling by Practitioners in Landscape-Scale Management Decisions. Journal of Forestry, 2019, 117, 267-279.	1.0	7
8	Impacts of the Northwest Forest Plan on forest composition and bird populations. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3322-3327.	7.1	45
9	Fire deficits have increased drought sensitivity in dry conifer forests: Fire frequency and treeâ€ring carbon isotope evidence from Central Oregon. Global Change Biology, 2019, 25, 1247-1262.	9.5	38
10	Cumulative effects of wildfires on forest dynamics in the eastern Cascade Mountains, USA. Ecological Applications, 2018, 28, 291-308.	3.8	29
11	Adaptation in fire-prone landscapes: interactions of policies, management, wildfire, and social networks in Oregon, USA. Ecology and Society, 2018, 23, .	2.3	13
12	Wildfires managed for restoration enhance ecological resilience. Ecosphere, 2018, 9, e02161.	2.2	51
13	Analyzing fine-scale spatiotemporal drivers of wildfire in a forest landscape model. Ecological Modelling, 2018, 384, 87-102.	2.5	39
14	Influence of landscape structure, topography, and forest type on spatial variation in historical fire regimes, Central Oregon, USA. Landscape Ecology, 2018, 33, 1195-1209.	4.2	37
15	Contemporary patterns of fire extent and severity in forests of the Pacific Northwest, USA (1985–2010). Ecosphere, 2017, 8, e01695.	2.2	150
16	Historical harvests reduce neighboring oldâ€growth basal area across a forest landscape. Ecological Applications, 2017, 27, 1666-1676.	3.8	5
17	Effects of accelerated wildfire on future fire regimes and implications for the United States federal fire policy. Ecology and Society, 2017, 22, .	2.3	26
18	Spatiotemporal dynamics of simulated wildfire, forest management, and forest succession in central Oregon, USA. Ecology and Society, 2017, 22, .	2.3	24

#	Article	IF	CITATIONS
19	Diversity in forest management to reduce wildfire losses: implications for resilience. Ecology and Society, 2017, 22, .	2.3	37
20	Integrating social science into empirical models of coupled human and natural systems. Ecology and Society, 2017, 22, .	2.3	28
21	Using an agent-based model to examine forest management outcomes in a fire-prone landscape in Oregon, USA. Ecology and Society, 2017, 22, .	2.3	73
22	Integrating Ecological and Social Knowledge: Learning from CHANS Research. Ecology and Society, 2017, 22, .	2.3	6
23	Watersheds and Landscapes. , 2017, , 207-222.		Ο
24	Setting the Stage: Vegetation Ecology and Dynamics. , 2017, , 16-32.		2
25	Wildfire risk as a socioecological pathology. Frontiers in Ecology and the Environment, 2016, 14, 276-284.	4.0	164
26	Evaluating carbon storage, timber harvest, and habitat possibilities for a Western Cascades (<scp>USA</scp>) forest landscape. Ecological Applications, 2016, 26, 2044-2059.	3.8	31
27	Tamm Review: Management of mixed-severity fire regime forests in Oregon, Washington, and Northern California. Forest Ecology and Management, 2016, 366, 221-250.	3.2	158
28	A cross ontinental comparison of plant and beetle responses to retention of forest patches during timber harvest. Ecological Applications, 2016, 26, 2495-2506.	3.8	42
29	Complex mountain terrain and disturbance history drive variation in forest aboveground live carbon density in the western Oregon Cascades, USA. Forest Ecology and Management, 2016, 366, 193-207.	3.2	23
30	Disturbance, tree mortality, and implications for contemporary regional forest change in the Pacific Northwest. Forest Ecology and Management, 2016, 374, 102-110.	3.2	26
31	REVIEW: Searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services. Journal of Applied Ecology, 2016, 53, 120-129.	4.0	353
32	Restoring fire-prone Inland Pacific landscapes: seven core principles. Landscape Ecology, 2015, 30, 1805-1835.	4.2	224
33	A Burning Problem: Social Dynamics of Disaster Risk Reduction through Wildfire Mitigation. Human Organization, 2015, 74, 329-340.	0.3	28
34	Regional variation in stand structure and development in forests of Oregon, Washington, and inland Northern California. Ecosphere, 2015, 6, 1-27.	2.2	41
35	Short- and long-term benefits for forest biodiversity of retaining unlogged patches in harvested areas. Forest Ecology and Management, 2015, 353, 187-195.	3.2	49
36	A Conceptual Framework for Characterizing Forest Areas with High Societal Values: Experiences from the Pacific Northwest of USA and Central Europe. Environmental Management, 2015, 56, 127-143.	2.7	9

#	Article	IF	CITATIONS
37	Postâ€fire tree establishment and early cohort development in conifer forests of the western Cascades of Oregon, USA. Ecosphere, 2014, 5, 1-23.	2.2	55
38	Examining fire-prone forest landscapes as coupled human and natural systems. Ecology and Society, 2014, 19, .	2.3	132
39	Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecological Applications, 2014, 24, 2063-2077.	3.8	209
40	Mixed onifer forests of central Oregon: effects of logging and fire exclusion vary with environment. Ecological Applications, 2014, 24, 1670-1688.	3.8	83
41	Reframing ecosystem management in the era of climate change: Issues and knowledge from forests. Biological Conservation, 2013, 165, 115-127.	4.1	51
42	Fireâ€mediated pathways of stand development in Douglasâ€fir/western hemlock forests of the Pacific Northwest, USA. Ecology, 2013, 94, 1729-1743.	3.2	85
43	The harvested side of edges: Effect of retained forests on the re-establishment of biodiversity in adjacent harvested areas. Forest Ecology and Management, 2013, 302, 107-121.	3.2	99
44	Applying the Ecosystem Services Concept to Public Land Management. Agricultural and Resource Economics Review, 2013, 42, 139-158.	1.1	26
45	Scenario Studies as a Synthetic and Integrative Research Activity for Long-Term Ecological Research. BioScience, 2012, 62, 367-376.	4.9	61
46	Science and Society: The Role of Long-Term Studies in Environmental Stewardship. BioScience, 2012, 62, 354-366.	4.9	42
47	Multi-scale Drivers of Spatial Variation in Old-Growth Forest Carbon Density Disentangled with Lidar and an Individual-Based Landscape Model. Ecosystems, 2012, 15, 1321-1335.	3.4	54
48	Challenges and a checklist for biodiversity conservation in fire-prone forests: Perspectives from the Pacific Northwest of USA and Southeastern Australia. Biological Conservation, 2012, 145, 5-14.	4.1	35
49	Canopy gaps affect long-term patterns of tree growth and mortality in mature and old-growth forests in the Pacific Northwest. Forest Ecology and Management, 2012, 281, 111-120.	3.2	47
50	Climatic, landform, microtopographic, and overstory canopy controls of tree invasion in a subalpine meadow landscape, Oregon Cascades, USA. Landscape Ecology, 2012, 27, 1197-1212.	4.2	26
51	An individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecological Modelling, 2012, 231, 87-100.	2.5	207
52	Canopy damage to conifer plantations within a large mixed-severity wildfire varies with stand age. Forest Ecology and Management, 2011, 262, 355-360.	3.2	19
53	The ecology of mixed severity fire regimes in Washington, Oregon, and Northern California. Forest Ecology and Management, 2011, 262, 703-717.	3.2	248
54	Soil Properties in Old-Growth Douglas-Fir Forest Gaps in the Western Cascade Mountains of Oregon. Northwest Science, 2010, 84, 33-45.	0.2	17

#	Article	IF	CITATIONS
55	Factors associated with crown damage following recurring mixed-severity wildfires and post-fire management in southwestern Oregon. Landscape Ecology, 2010, 25, 775-789.	4.2	71
56	Climate change adaptation strategies for federal forests of the Pacific Northwest, USA: ecological, policy, and socio-economic perspectives. Landscape Ecology, 2010, 25, 1185-1199.	4.2	94
57	Underestimating Risks to the Northern Spotted Owl in Fireâ€Prone Forests: Response to Hanson et al Conservation Biology, 2010, 24, 330-333.	4.7	25
58	Potential future dead wood dynamics in a multi-ownership region: The Coastal Province of Oregon, USA. Forest Ecology and Management, 2010, 259, 312-322.	3.2	5
59	Vegetation and weather explain variation in crown damage within a large mixed-severity wildfire. Forest Ecology and Management, 2009, 258, 1684-1694.	3.2	110
60	Conserving biodiversity using risk management: hoax or hope. Frontiers in Ecology and the Environment, 2009, 7, 103-109.	4.0	19
61	Relationships of dead wood patterns with biophysical characteristics and ownership according to scale in Coastal Oregon, USA. Landscape Ecology, 2008, 23, 55-68.	4.2	32
62	The Relative Impact of Harvest and Fire upon Landscape-Level Dynamics of Older Forests: Lessons from the Northwest Forest Plan. Ecosystems, 2008, 11, 1106-1119.	3.4	55
63	Calibrating and testing a gap model for simulating forest management in the Oregon Coast Range. Forest Ecology and Management, 2008, 256, 958-972.	3.2	26
64	Reburn severity in managed and unmanaged vegetation in a large wildfire. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10743-10748.	7.1	239
65	INFLUENCE OF ENVIRONMENT, DISTURBANCE, AND OWNERSHIP ON FOREST VEGETATION OF COASTAL OREGON. , 2007, 17, 18-33.		61
66	SIMULATING FOREST STRUCTURE, TIMBER PRODUCTION, AND SOCIOECONOMIC EFFECTS IN A MULTI-OWNER PROVINCE. , 2007, 17, 34-47.		30
67	An assessment of dead wood patterns and their relationships with biophysical characteristics in two landscapes with different disturbance histories in coastal Oregon, USA. Canadian Journal of Forest Research, 2007, 37, 940-956.	1.7	7
68	Historical range of variability in live and dead wood biomass: a regional-scale simulation study. Canadian Journal of Forest Research, 2007, 37, 2349-2364.	1.7	12
69	Sustaining Biodiversity in the Oregon Coast Range: Potential effects of Forest Policies in a Multi-ownership Province. Ecology and Society, 2007, 12, .	2.3	8
70	POTENTIAL EFFECTS OF FOREST POLICIES ON TERRESTRIAL BIODIVERSITY IN A MULTI-OWNERSHIP PROVINCE. , 2007, 17, 48-65.		68
71	CUMULATIVE ECOLOGICAL AND SOCIOECONOMIC EFFECTS OF FOREST POLICIES IN COASTAL OREGON. , 2007, 17, 5-17.		75
72	REGIONAL POLICY MODELS FOR FOREST BIODIVERSITY ANALYSIS: LESSONS FROM COASTAL OREGON. , 2007, 17, 81-90.		6

#	Article	IF	CITATIONS
73	Historical disturbance regimes as a reference for forest policy in a multiowner province: a simulation experiment. Canadian Journal of Forest Research, 2006, 36, 401-417.	1.7	27
74	Key issues in making and using satellite-based maps in ecology: A primer. Forest Ecology and Management, 2006, 222, 167-181.	3.2	82
75	Monitoring late-successional forest biodiversity in the Pacific Northwest, U.S.A Forestry Chronicle, 2006, 82, 364-367.	0.6	4
76	Conserving Old-Growth Forest Diversity in Disturbance-Prone Landscapes. Conservation Biology, 2006, 20, 351-362.	4.7	152
77	HISTORICAL RANGE OF VARIABILITY IN LANDSCAPE STRUCTURE: A SIMULATION STUDY IN OREGON, USA. , 2005, 15, 1727-1746.		66
78	A hierarchical spatial framework for forest landscape planning. Ecological Modelling, 2005, 182, 25-48.	2.5	49
79	Vegetation—environment relationships in zero-order basins in coastal Oregon. Canadian Journal of Forest Research, 2005, 35, 340-355.	1.7	16
80	Dynamics of hardwood patches in a conifer matrix: 54 years of change in a forested landscape in Coastal Oregon, USA. Biological Conservation, 2005, 122, 363-374.	4.1	40
81	Spatio-temporal development of forests - current trends in field methods and models. Oikos, 2004, 107, 3-15.	2.7	93
82	Forest cover changes in the Oregon Coast Range from 1939 to 1993. Forest Ecology and Management, 2004, 200, 129-147.	3.2	53
83	Responses of herbs and shrubs to reduced root competition under canopies and in gaps: a trenching experiment in old-growth Douglas-fir forests. Canadian Journal of Forest Research, 2003, 33, 2052-2057.	1.7	39
84	The Importance of Scale in Assessing the Compatibility of Forest Commodities and Biodiversity. Managing Forest Ecosystems, 2003, , 211-235.	0.9	5
85	Microclimatic and soil moisture responses to gap formation in coastal Douglas-fir forests. Canadian Journal of Forest Research, 2002, 32, 332-343.	1.7	241
86	Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. Forest Ecology and Management, 2002, 155, 399-423.	3.2	1,383
87	Assessing the ecological consequences of forest policies in a multi-ownership province in Oregon. , 2002, , 179-207.		24
88	Characterizing 23 Years (1972-95) of Stand Replacement Disturbance in Western Oregon Forests with Landsat Imagery. Ecosystems, 2002, 5, 122-137.	3.4	192
89	Landscape- vs Gap-level Controls on the Abundance of a Fire-sensitive, Late-successional Tree Species. Ecosystems, 2002, 5, 232-243.	3.4	7
90	Title is missing!. Landscape Ecology, 2002, 17, 685-697.	4.2	67

#	Article	IF	CITATIONS
91	Modeling landscape patterns of understory tree regeneration in the Pacific Northwest, USA. Applied Vegetation Science, 2001, 4, 277-286.	1.9	12
92	TEN YEARS OF VEGETATION SUCCESSION ON A DEBRIS-FLOW DEPOSIT IN OREGON. Journal of the American Water Resources Association, 2001, 37, 1693-1708.	2.4	46
93	INFLUENCES OF ENVIRONMENT AND DISTURBANCE ON FOREST PATTERNS IN COASTAL OREGON WATERSHEDS. Ecology, 2001, 82, 1443-1459.	3.2	77
94	Simulating Historical Variability in the Amount of Old Forests in the Oregon Coast Range. Conservation Biology, 2000, 14, 167-180.	4.7	140
95	Structure and composition of unmanaged riparian forests in the coastal mountains of Oregon, U.S.A Canadian Journal of Forest Research, 1999, 29, 1557-1573.	1.7	73
96	Dynamic forest mosaics. , 1999, , 95-160.		87
97	Distribution of herbs and shrubs in relation to landform and canopy cover in riparian forests of coastal Oregon. Canadian Journal of Botany, 1998, 76, 298-315.	1.1	38
98	REGIONAL GRADIENT ANALYSIS AND SPATIAL PATTERN OF WOODY PLANT COMMUNITIES OF OREGON FORESTS. Ecological Monographs, 1998, 68, 151-182.	5.4	179
99	Distribution of herbs and shrubs in relation to landform and canopy cover in riparian forests of coastal Oregon. Canadian Journal of Botany, 1998, 76, 298-315.	1.1	71
100	Regional Gradient Analysis and Spatial Pattern of Woody Plant Communities of Oregon Forests. Ecological Monographs, 1998, 68, 151.	5.4	5
101	MICROSITE CONTROLS ON TREE SEEDLING ESTABLISHMENT IN CONIFER FOREST CANOPY GAPS. Ecology, 1997, 78, 2458-2473.	3.2	236
102	Gap Size, Within-Gap Position and Canopy Structure Effects on Conifer Seedling Establishment. Journal of Ecology, 1996, 84, 635.	4.0	235
103	Growing-Season Microclimatic Gradients from Clearcut Edges into Old-Growth Douglas-Fir Forests. , 1995, 5, 74-86.		553
104	Plant Species Diversity in Natural and Managed Forests of the Pacific Northwest. , 1995, 5, 913-934.		468
105	Water content measurement in forest soils and decayed wood using time domain reflectometry. Canadian Journal of Forest Research, 1995, 25, 376-385.	1.7	59
106	Ecology of Pacific Yew (<i>Taxus brevifolia</i>) in Western Oregon and Washington. Conservation Biology, 1995, 9, 1199-1207.	4.7	23
107	Ecology of Pacific Yew (Taxus brevifolia) in Western Oregon and Washington. Conservation Biology, 1995, 9, 1199-1207.	4.7	6

Dynamics and Pattern of a Managed Coniferous Forest Landscape in Oregon. , 1994, 4, 555-568.

211

#	Article	IF	CITATIONS
109	Developing alternative forest cutting patterns: A simulation approach. Landscape Ecology, 1993, 8, 63-75.	4.2	134
110	An empirical model for predicting diurnal air-temperature gradients from edge into old-growth Douglas-fir forest. Ecological Modelling, 1993, 67, 179-198.	2.5	35
111	Contrasting microclimates among clearcut, edge, and interior of old-growth Douglas-fir forest. Agricultural and Forest Meteorology, 1993, 63, 219-237.	4.8	484
112	Characterizing Canopy Gap Structure in Forests Using Wavelet Analysis. Journal of Ecology, 1992, 80, 205.	4.0	197
113	Vegetation Responses to Edge Environments in Old-Growth Douglas-Fir Forests. , 1992, 2, 387-396.		409
114	Estimating structural attributes of Douglas-fir/western hemlock forest stands from landsat and SPOT imagery. Remote Sensing of Environment, 1992, 41, 1-17.	11.0	296
115	Measuring forest landscape patterns in the cascade range of Oregon, USA. Biological Conservation, 1991, 57, 73-88.	4.1	183
116	Semivariograms of digital imagery for analysis of conifer canopy structure. Remote Sensing of Environment, 1990, 34, 167-178.	11.0	252
117	Canopy gaps in Douglas-fir forests of the Cascade Mountains. Canadian Journal of Forest Research, 1990, 20, 649-658.	1.7	200
118	Gap Characteristics and Vegetation Response in Coniferous Forests of the Pacific Northwest. Ecology, 1989, 70, 543-545.	3.2	195
119	Coarse Woody Debris in Douglas-Fir Forests of Western Oregon and Washington. Ecology, 1988, 69, 1689-1702.	3.2	511
120	Ecological species groups of upland northern hardwood – hemlock forest ecosystems of the Sylvania Recreation Area, Upper Peninsula, Michigan. Canadian Journal of Forest Research, 1985, 15, 961-972.	1.7	29
121	A multifactor ecological classification of the northern hardwood and conifer ecosystems of Sylvania Recreation Area, Upper Peninsula, Michigan. Canadian Journal of Forest Research, 1985, 15, 949-960.	1.7	72