Entsar I Rabea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10619812/publications.pdf Version: 2024-02-01

ENTEAD I DAREA

#	Article	IF	CITATIONS
1	Synthesis, antibacterial, antioxidant, and molecular docking studies of 6-methylpyrimidin-4(3H)-one and oxo-1,2,4-triazolo[4,3-a]pyrimidine derivatives. Journal of Molecular Structure, 2022, 1249, 131551.	1.8	5
2	Structure and antimicrobial comparison between N-(benzyl) chitosan derivatives and N-(benzyl) chitosan tripolyphosphate nanoparticles against bacteria, fungi, and yeast. International Journal of Biological Macromolecules, 2021, 186, 724-734.	3.6	11
3	Plant Lectins as Insecticidal Agents Against Cotton Leafworm Spodoptera littoralisand Their Potential Applications in Crop Protection. Natural Products Journal, 2021, 11, 569-582.	0.1	0
4	Studies on the EC50 of Natural Monoterpenes as Fungal Inhibitors with Quantitative Structure-Activity Relationships (QSARs). Natural Products Journal, 2020, 10, 44-60.	0.1	0
5	Antimicrobial and antioxidant activities of hydrocarbon and oxygenated monoterpenes against some foodborne pathogens through in vitro and in silico studies. Pesticide Biochemistry and Physiology, 2019, 158, 185-200.	1.6	71
6	lsolation, characterisation and efficacy of the bacterial strain Lysinibacillus sphaericus YMM in biodegradation of malathion insecticide in liquid media. International Journal of Environmental Studies, 2019, 76, 616-633.	0.7	3
7	Synthesis and Antioxidant Activity of Novel 5-amino-2-alkyl/glycosylthio-1,3,4- thiadiazoles: Regioselective Alkylation and Glycosylation of the 5-amino-1,3,4- thiadiazole-2-thiol Scaffold. Current Organic Synthesis, 2019, 16, 801-809.	0.7	3
8	Chitosan-Based Edible Membranes for Food Packaging. , 2018, , 237-267.		1
9	Current Applications in Food Preservation Based on Marine Biopolymers. , 2018, , 609-650.		3
10	Strawberry Shelf Life, Composition, and Enzymes Activity in Response to Edible Chitosan Coatings. International Journal of Fruit Science, 2017, 17, 117-136.	1.2	45
11	Chitosan and Its Derivatives as Active Ingredients Against Plant Pests and Diseases. , 2016, , 179-219.		10
12	The Antibacterial Activity of Chitosan Products Blended with Monoterpenes and Their Biofilms against Plant Pathogenic Bacteria. Scientifica, 2016, 2016, 1-10.	0.6	22
13	Synthesis and Antimicrobial Activity of <i> N</i> -(6-Carboxyl Cyclohex-3-ene Carbonyl) Chitosan with Different Degrees of Substitution. International Journal of Carbohydrate Chemistry, 2016, 2016, 1-10.	1.5	4
14	Production and Properties of Different Molecular Weights of Chitosan from Marine Shrimp Shells. Journal of Chitin and Chitosan Science, 2016, 4, 46-54.	0.3	5
15	Toxicity and biochemical changes in the honey bee Apis mellifera exposed to four insecticides under laboratory conditions. Apidologie, 2015, 46, 177-193.	0.9	88
16	Antimicrobial and inhibitory enzyme activity of N-(benzyl) and quaternary N-(benzyl) chitosan derivatives on plant pathogens. Carbohydrate Polymers, 2014, 111, 670-682.	5.1	95
17	Synthesis and antifungal property of N-(aryl) and quaternary N-(aryl) chitosan derivatives against Botrytis cinerea. Cellulose, 2014, 21, 3121-3137.	2.4	27
18	Antimicrobial Activity of Biopolymer Chitosans and Monoterpenes Against the Honeybee Pathogens <l>Paenibacillus larvae</l> and Ascosphaera apis. Journal of Chitin and Chitosan Science, 2014, 2, 306-310.	0.3	8

ENTSAR I RABEA

#	Article	IF	CITATIONS
19	<i>In Vitro</i> Assessment of Antimicrobial Property of <i>O</i> -(phenoxyacetic) Chitosan Compounds on Plant Pathogens. Journal of Chitin and Chitosan Science, 2014, 2, 293-298.	0.3	3
20	Synthesis and structure–activity relationship of N-(cinnamyl) chitosan analogs as antimicrobial agents. International Journal of Biological Macromolecules, 2013, 57, 185-192.	3.6	33
21	Inhibitory effects on microbial growth ofBotrytis cinereaandErwinia carotovoraon potato using of a biopolymer chitosan at different molecular weights. Archives of Phytopathology and Plant Protection, 2012, 45, 1939-1949.	0.6	3
22	Characterization and antimicrobial activity of water-soluble N-(4-carboxybutyroyl) chitosans against some plant pathogenic bacteria and fungi. Carbohydrate Polymers, 2012, 87, 250-256.	5.1	37
23	A Biopolymer Chitosan and Its Derivatives as Promising Antimicrobial Agents against Plant Pathogens and Their Applications in Crop Protection. International Journal of Carbohydrate Chemistry, 2011, 2011, 1-29.	1.5	276
24	Toxic Effect and Biochemical Study of Chlorfluazuron, Oxymatrine, and Spinosad on Honey Bees (Apis) Tj ETQq0	0 <u>0 r</u> gBT /	Overlock 10
25	Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit. Postharvest Biology and Technology, 2009, 51, 110-117.	2.9	218
26	In vitro assessment of N-(benzyl)chitosan derivatives against some plant pathogenic bacteria and fungi. European Polymer Journal, 2009, 45, 237-245.	2.6	89
27	Enhancement of fungicidal and insecticidal activity by reductive alkylation of chitosan. Pest Management Science, 2006, 62, 890-897.	1.7	48
28	Fungicidal and Insecticidal Activity of O-Acyl Chitosan Derivatives. Polymer Bulletin, 2005, 54, 279-289.	1.7	71
29	Insecticidal and fungicidal activity of new synthesized chitosan derivatives. Pest Management Science, 2005, 61, 951-960.	1.7	143
30	Synthesis and Fungicidal Activity of NewN,O-Acyl Chitosan Derivatives. Biomacromolecules, 2004, 5, 589-595.	2.6	152

31	Chitosan as Antimicrobial Agent:Â Applications and Mode of Action. Biomacromolecules, 2003, 4, 1457-1465.	2.6	2,503
----	---	-----	-------