
Guy Mercier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10619577/publications.pdf Version: 2024-02-01

CUV MEDCIED

#	Article	IF	CITATIONS
1	Copper extraction and recovery from alkaline copper quaternary and copper azole treated wood using sulfuric acid leaching and ion exchange or electrodeposition. Journal of Cleaner Production, 2021, 279, 123687.	9.3	8
2	Stabilization and Management of Sulfate-Reducing Bioreactor Residues After Acid Mine Drainage Treatment. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	2
3	Hydrometallurgical Process and Economic Evaluation for Recovery of Zinc and Manganese from Spent Alkaline Batteries. Metals, 2020, 10, 1175.	2.3	15
4	Recovery of Zn (II), Mn (II), Cd (II) and Ni (II) from the unsorted spent batteries using solvent extraction, electrodeposition and precipitation methods. Journal of Cleaner Production, 2017, 148, 233-244.	9.3	113
5	Optimization of PAHs Oxidation from a Concentrate of Soil Attrition Using Potassium Permanganate. Soil and Sediment Contamination, 2017, 26, 605-622.	1.9	2
6	Counter-Current Attrition Process (CCAP) to Remove Metals, Pentachlorophenol (PCP), Dioxins and Furans (PCDDF) from the 1-4-mm Fraction of Contaminated Soil. Soil and Sediment Contamination, 2017, 26, 636-650.	1.9	5
7	Pilot-Scale Decontamination of Small-Arms Shooting Range Soil Polluted with Copper, Lead, Antimony, and Zinc by Acid and Saline Leaching. Journal of Environmental Engineering, ASCE, 2015, 141, .	1.4	9
8	Treatment of contaminated soil leachate by precipitation, adsorption and ion exchange. Journal of Environmental Chemical Engineering, 2015, 3, 977-985.	6.7	30
9	Metal Recycling Technologies for Battery Waste. Recent Patents on Engineering, 2014, 8, 13-23.	0.4	6
10	A Counter-Current Acid Leaching Process for the Remediation of Contaminated Soils from a Small-Arms Shooting Range. Soil and Sediment Contamination, 2014, 23, 194-210.	1.9	11
11	Monoethanolamine extraction of copper-preservative-treated wood and reuse of the extract for wood preservation. Wood Science and Technology, 2014, 48, 393-409.	3.2	9
12	Demonstration of the efficiency and robustness of an acid leaching process to remove metals from various CCA-treated wood samples. Journal of Environmental Management, 2014, 132, 197-206.	7.8	17
13	Simultaneous Electrochemical Leaching and Electrodeposition of Heavy Metals in a Single-Cell Process for Wastewater Sludge Treatment. Journal of Environmental Engineering, ASCE, 2014, 140, .	1.4	9
14	Counter-Current Metal Leaching and Precipitation for Soil Remediation. Soil and Sediment Contamination, 2013, 22, 856-875.	1.9	8
15	Treatment of Arsenic-, Chromium-, Copper- and Pentachlorophenol-Polluted Soil Using Flotation. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	19
16	Chemical Leaching of Antimony and Other Metals from Small Arms Shooting Range Soil. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	28
17	Pilot-scale investigation of the robustness and efficiency of a copper-based treated wood wastes recycling process. Journal of Hazardous Materials, 2013, 261, 277-285.	12.4	15
18	Electrochemical Oxidation of Chlortetracycline Using Ti/IrO2 and Ti/PbO2 Anode Electrodes: Application of Experimental Design Methodology. Journal of Environmental Engineering, ASCE, 2013, 139, 810-821.	1.4	19

GUY MERCIER

#	Article	IF	CITATIONS
19	Optimization of Copper Removal from ACQ-, CA-, and MCQ-Treated Wood Using an Experimental Design Methodology. Journal of Environmental Engineering, ASCE, 2013, 139, 576-587.	1.4	16
20	CCA-Treated Wood Waste Remediation Process Optimization with Successive Recirculation Loops Study. Journal of Environmental Engineering, ASCE, 2012, 138, 200-207.	1.4	3
21	Counter-current acid leaching process for copper azole treated wood waste. Environmental Technology (United Kingdom), 2012, 33, 2111-2118.	2.2	6
22	Toxic Metal Removal from Polluted Soil by Acid Extraction. Water, Air, and Soil Pollution, 2012, 223, 3739-3755.	2.4	24
23	Hybrid Process Combining Electrocoagulation and Electro-Oxidation Processes for the Treatment of Restaurant Wastewaters. Journal of Environmental Engineering, ASCE, 2012, 138, 1146-1156.	1.4	43
24	Design and performance of a pilot-scale equipment for CCA-treated wood remediation. Separation and Purification Technology, 2012, 85, 90-95.	7.9	14
25	Electrochemical treatment of bisphenol-A using response surface methodology. Journal of Applied Electrochemistry, 2012, 42, 95-109.	2.9	44
26	Experimental design methodology applied to electrochemical oxidation of the herbicide atrazine using Ti/lrO2 and Ti/SnO2 circular anode electrodes. Journal of Hazardous Materials, 2011, 185, 1499-1507.	12.4	53
27	Application of a CCA-treated wood waste decontamination process to other copper-based preservative-treated wood after disposal. Journal of Hazardous Materials, 2011, 186, 1880-1887.	12.4	29
28	Comparison between Fenton oxidation process and electrochemical oxidation for PAH removal from an amphoteric surfactant solution. Journal of Applied Electrochemistry, 2010, 40, 1493-1510.	2.9	23
29	Laboratory-Scale Flotation Process for Treatment of Soils Contaminated with Both PAH and Lead. Journal of Environmental Engineering, ASCE, 2010, 136, 1063-1074.	1.4	12
30	Metals removal from soil, fly ash and sewage sludge leachates by precipitation and dewatering properties of the generated sludge. Journal of Hazardous Materials, 2009, 172, 1372-1382.	12.4	90
31	In situ active chlorine generation for the treatment of dye-containing effluents. Journal of Applied Electrochemistry, 2009, 39, 2397-2408.	2.9	46
32	Amphoteric Surfactants for PAH and Lead Polluted-Soil Treatment Using Flotation. Water, Air, and Soil Pollution, 2009, 197, 381-393.	2.4	36
33	Comparative study of dewatering characteristics of metal precipitates generated during treatment of monometallic solutions. Hydrometallurgy, 2009, 95, 61-69.	4.3	15
34	Selective recovery of metals in leachate from chromated copper arsenate treated wastes using electrochemical technology and chemical precipitation. Hydrometallurgy, 2009, 96, 318-326.	4.3	78
35	Electrochemical degradation of polycyclic aromatic hydrocarbons in creosote solution using ruthenium oxide on titanium expanded mesh anode. Journal of Hazardous Materials, 2009, 164, 1118-1129.	12.4	85
36	Selective recovery of Cr and Cu in leachate from chromated copper arsenate treated wood using chelating and acidic ion exchange resins. Journal of Hazardous Materials, 2009, 169, 1099-1105.	12.4	62

GUY MERCIER

#	Article	IF	CITATIONS
37	Coupling extraction–flotation with surfactant and electrochemical degradation for the treatment of PAH contaminated hazardous wastes. Journal of Hazardous Materials, 2009, 170, 1218-1226.	12.4	18
38	Transformation of red mud from aluminium industry into a coagulant for wastewater treatment. Hydrometallurgy, 2008, 92, 16-25.	4.3	59
39	Review of Electrochemical Technologies for Environmental Applications. Recent Patents on Engineering, 2007, 1, 257-272.	0.4	110
40	Chemical treatment of sludge: In-depth study on toxic metal removal efficiency, dewatering ability and fertilizing property preservation. Water Research, 2007, 41, 2028-2038.	11.3	26
41	Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate. Journal of Hazardous Materials, 2006, 137, 581-590.	12.4	352
42	Electrolytic recovery of lead in used lime leachate from municipal waste incinerator. Journal of Hazardous Materials, 2005, 120, 201-211.	12.4	23
43	Laboratory Study of Successive Soil Saline Leaching and Electrochemical Lead Recovery. Journal of Environmental Engineering, ASCE, 2005, 131, 305-314.	1.4	29
44	Title is missing!. Water, Air, and Soil Pollution, 2002, 135, 105-130.	2.4	40
45	Prediction of Metal Removal Efficiency from Contaminated Soils by Physical Methods. Journal of Environmental Engineering, ASCE, 2001, 127, 348-358.	1.4	47
46	Enlèvement du phosphore des eaux usées par traitement à base de tourbe dopée aux boues rouges. Canadian Journal of Chemical Engineering, 1999, 77, 1185-1194.	1.7	16
47	Procédés d'oxydation avancée dans le traitement des eaux et des effluents industriels: Application à la dégradation des polluants réfractaires. Revue Des Sciences De L'Eau, 0, 22, 535-564.	0.2	52