Ad Wiebenga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10619008/publications.pdf

Version: 2024-02-01

26 4,005 20 26
papers citations h-index g-index

26 26 26 4795
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes. Science, 2012, 336, 1715-1719.	12.6	1,424
2	The Plant Cell Wall–Decomposing Machinery Underlies the Functional Diversity of Forest Fungi. Science, 2011, 333, 762-765.	12.6	512
3	Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biology, 2017, 18, 28.	8.8	417
4	Comparative genomics of <i>Ceriporiopsis subvermispora</i> and <i>Phanerochaete chrysosporium</i> provide insight into selective ligninolysis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5458-5463.	7.1	259
5	Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication. Current Biology, 2016, 26, 1577-1584.	3.9	175
6	Investigation of inter- and intraspecies variation through genome sequencing of Aspergillus section Nigri. Nature Genetics, $2018, 50, 1688-1695$.	21.4	160
7	Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize. BMC Genomics, 2012, 13, 444.	2.8	125
8	A comparative genomics study of 23 Aspergillus species from section Flavi. Nature Communications, 2020, 11, 1106.	12.8	125
9	Closely related fungi employ diverse enzymatic strategies to degrade plant biomass. Biotechnology for Biofuels, 2015, 8, 107.	6.2	111
10	Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level. BMC Genomics, 2011, 12, 38.	2.8	105
11	The genome of the white-rot fungus Pycnoporus cinnabarinus: a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown. BMC Genomics, 2014, 15, 486.	2.8	91
12	Genomic and transcriptomic analysis of Laccaria bicolor CAZome reveals insights into polysaccharides remodelling during symbiosis establishment. Fungal Genetics and Biology, 2014, 72, 168-181.	2.1	81
13	Protease and lipase activities of fungal and bacterial strains derived from an artisanal raw ewe's milk cheese. International Journal of Food Microbiology, 2016, 237, 17-27.	4.7	72
14	An enzyme cocktail for efficient protoplast formation in Aspergillus niger. Journal of Microbiological Methods, 2009, 76, 305-306.	1.6	59
15	Aspergillus niger RhaR, a regulator involved in l-rhamnose release and catabolism. Applied Microbiology and Biotechnology, 2014, 98, 5531-40.	3. 6	56
16	Genetic Interaction of Aspergillus nidulans galR, xlnR and araR in Regulating D-Galactose and L-Arabinose Release and Catabolism Gene Expression. PLoS ONE, 2015, 10, e0143200.	2.5	41
17	Carbohydrate utilization and metabolism is highly differentiated in Agaricus bisporus. BMC Genomics, 2013, 14, 663.	2.8	35
18	Genomic and Genetic Insights Into a Cosmopolitan Fungus, Paecilomyces variotii (Eurotiales). Frontiers in Microbiology, 2018, 9, 3058.	3.5	35

#	Article	IF	CITATIONS
19	Penicillium subrubescens is a promising alternative for Aspergillus niger in enzymatic plant biomass saccharification. New Biotechnology, 2016, 33, 834-841.	4.4	27
20	Macroalgae Derived Fungi Have High Abilities to Degrade Algal Polymers. Microorganisms, 2020, 8, 52.	3.6	24
21	Secretion of small proteins is speciesâ€specific within <i>Aspergillus</i> sp. Microbial Biotechnology, 2017, 10, 323-329.	4.2	23
22	Colonies of the fungus Aspergillus niger are highly differentiated to adapt to local carbon source variation. Environmental Microbiology, 2020, 22, 1154-1166.	3.8	15
23	Genetic transformation of the white-rot fungus Dichomitus squalens using a new commercial protoplasting cocktail. Journal of Microbiological Methods, 2017, 143, 38-43.	1.6	12
24	Physiological background of the remarkably high Cd ²⁺ tolerance of the <i>Aspergillus fumigatus</i> Af293 strain. Journal of Basic Microbiology, 2018, 58, 957-967.	3.3	10
25	High resolution visualization and exoâ€proteomics reveal the physiological role of XlnR and AraR in plant biomass colonization and degradation by ⟨i⟩Aspergillus niger⟨/i⟩. Environmental Microbiology, 2017, 19, 4587-4598.	3.8	6
26	Transcriptome analysis of Aspergillus niger xlnR and xkiA mutants grown on corn Stover and soybean hulls reveals a highly complex regulatory network. BMC Genomics, 2019, 20, 853.	2.8	5