Won Mo Seong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10618817/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In situ multiscale probing of the synthesis of a Ni-rich layered oxide cathode reveals reaction heterogeneity driven by competing kinetic pathways. Nature Chemistry, 2022, 14, 614-622.	13.6	52
2	Cobalt-free, high-nickel layered oxide cathodes for lithium-ion batteries: Progress, challenges, and perspectives. Energy Storage Materials, 2021, 34, 250-259.	18.0	145
3	Nanoscale Phenomena in Lithium-Ion Batteries. Chemical Reviews, 2020, 120, 6684-6737.	47.7	142
4	Controlling Residual Lithium in Highâ€Nickel (>90 %) Lithium Layered Oxides for Cathodes in Lithiumâ€ion Batteries. Angewandte Chemie, 2020, 132, 18821-18828.	2.0	2
5	Controlling Residual Lithium in Highâ€Nickel (>90 %) Lithium Layered Oxides for Cathodes in Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 18662-18669.	13.8	81
6	Impact of Residual Lithium on the Adoption of High-Nickel Layered Oxide Cathodes for Lithium-Ion Batteries. Chemistry of Materials, 2020, 32, 9479-9489.	6.7	81
7	Complementary Effects of Mg and Cu Incorporation in Stabilizing the Cobalt-Free LiNiO ₂ Cathode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 43653-43664.	8.0	46
8	Understanding capacity fading mechanism of thick electrodes for lithium-ion rechargeable batteries. Journal of Power Sources, 2020, 468, 228369.	7.8	54
9	Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nature Materials, 2020, 19, 419-427.	27.5	328
10	Amorphous multinary phyllosilicate catalysts for electrochemical water oxidation. Journal of Materials Chemistry A, 2019, 7, 18380-18387.	10.3	21
11	A bifunctional auxiliary electrode for safe lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 24807-24813.	10.3	4
12	Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries. Nature Communications, 2019, 10, 2598.	12.8	195
13	Toward a low-cost high-voltage sodium aqueous rechargeable battery. Materials Today, 2019, 29, 26-36.	14.2	156
14	Fabrication of a Cu oneâ€6haped Cation Source Inserted Conductive Bridge Random Access Memory and Its Improved Switching Reliability. Advanced Functional Materials, 2019, 29, 1806278.	14.9	51
15	Unveiling the Intrinsic Cycle Reversibility of a LiCoO ₂ Electrode at 4.8-V Cutoff Voltage through Subtractive Surface Modification for Lithium-Ion Batteries. Nano Letters, 2019, 19, 29-37.	9.1	78
16	Abnormal self-discharge in lithium-ion batteries. Energy and Environmental Science, 2018, 11, 970-978.	30.8	114
17	Suppression of Voltage Decay through Manganese Deactivation and Nickel Redox Buffering in Highâ€Energy Layered Lithiumâ€Rich Electrodes. Advanced Energy Materials, 2018, 8, 1800606.	19.5	97
18	Engineering Solid Electrolyte Interphase for Pseudocapacitive Anatase TiO ₂ Anodes in Sodiumâ€ l on Batteries. Advanced Functional Materials, 2018, 28, 1802099.	14.9	106

WON MO SEONG

#	Article	IF	CITATIONS
19	Investigation on the interface between Li10GeP2S12 electrolyte and carbon conductive agents in all-solid-state lithium battery. Scientific Reports, 2018, 8, 8066.	3.3	62
20	Lithium-free transition metal monoxides for positive electrodes in lithium-ion batteries. Nature Energy, 2017, 2, .	39.5	94
21	High-efficiency and high-power rechargeable lithium–sulfur dioxide batteries exploiting conventional carbonate-based electrolytes. Nature Communications, 2017, 8, 14989.	12.8	40
22	Amorphous Cobalt Phyllosilicate with Layered Crystalline Motifs as Water Oxidation Catalyst. Advanced Materials, 2017, 29, 1606893.	21.0	84
23	Efficient Method of Designing Stable Layered Cathode Material for Sodium Ion Batteries Using Aluminum Doping. Journal of Physical Chemistry Letters, 2017, 8, 5021-5030.	4.6	65
24	Dissolution and ionization of sodium superoxide in sodium–oxygen batteries. Nature Communications, 2016, 7, 10670.	12.8	129
25	Roughness of Ti Substrates for Control of the Preferred Orientation of TiO ₂ Nanotube Arrays as a New Orientation Factor. Journal of Physical Chemistry C, 2015, 119, 13297-13305.	3.1	26
26	High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nature Communications, 2015, 6, 7410.	12.8	417
27	Niobium Doping Effects on TiO ₂ Mesoscopic Electron Transport Layerâ€Based Perovskite Solar Cells. ChemSusChem, 2015, 8, 2392-2398.	6.8	139
28	Observation of anatase nanograins crystallizing from anodic amorphous TiO ₂ nanotubes. CrystEngComm, 2015, 17, 7346-7353.	2.6	13
29	Nb-doped TiO ₂ air-electrode for advanced Li-air batteries. Journal of Asian Ceramic Societies, 2015, 3, 77-81.	2.3	12
30	Anatase TiO2 nanorod-decoration for highly efficient photoenergy conversion. Nanoscale, 2013, 5, 11725.	5.6	44
31	γ-Al2O3 nanospheres-directed synthesis of monodispersed BaAl2O4:Eu2+ nanosphere phosphors. CrystEngComm, 2013, 15, 4797.	2.6	11
32	Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion. Energy and Environmental Science, 2012, 5, 7989.	30.8	88