List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10616785/publications.pdf Version: 2024-02-01

		1612	2381
290	41,819	105	198
papers	citations	h-index	g-index
330	330	330	26426
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Self-Supported Nanoporous Cobalt Phosphide Nanowire Arrays: An Efficient 3D Hydrogen-Evolving Cathode over the Wide Range of pH 0–14. Journal of the American Chemical Society, 2014, 136, 7587-7590.	6.6	2,208
2	Recent Progress in Cobaltâ€Based Heterogeneous Catalysts for Electrochemical Water Splitting. Advanced Materials, 2016, 28, 215-230.	11.1	2,083
3	Hydrothermal Treatment of Grass: A Lowâ€Cost, Green Route to Nitrogenâ€Doped, Carbonâ€Rich, Photoluminescent Polymer Nanodots as an Effective Fluorescent Sensing Platform for Labelâ€Free Detection of Cu(II) Ions. Advanced Materials, 2012, 24, 2037-2041.	11.1	1,345
4	Economical, Green Synthesis of Fluorescent Carbon Nanoparticles and Their Use as Probes for Sensitive and Selective Detection of Mercury(II) Ions. Analytical Chemistry, 2012, 84, 5351-5357.	3.2	986
5	Carbon Nanotubes Decorated with CoP Nanocrystals: A Highly Active Nonâ€Nobleâ€Metal Nanohybrid Electrocatalyst for Hydrogen Evolution. Angewandte Chemie - International Edition, 2014, 53, 6710-6714.	7.2	939
6	Metal–Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie - International Edition, 2016, 55, 5414-5445.	7.2	888
7	Feâ€Doped CoP Nanoarray: A Monolithic Multifunctional Catalyst for Highly Efficient Hydrogen Generation. Advanced Materials, 2017, 29, 1602441.	11.1	834
8	A Costâ€Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity: FeP Nanowire Array as the Active Phase. Angewandte Chemie - International Edition, 2014, 53, 12855-12859.	7.2	816
9	Selfâ€Supported Cu ₃ P Nanowire Arrays as an Integrated Highâ€Performance Threeâ€Dimensional Cathode for Generating Hydrogen from Water. Angewandte Chemie - International Edition, 2014, 53, 9577-9581.	7.2	784
10	Closely Interconnected Network of Molybdenum Phosphide Nanoparticles: A Highly Efficient Electrocatalyst for Generating Hydrogen from Water. Advanced Materials, 2014, 26, 5702-5707.	11.1	783
11	Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS ₂ Catalyst: Theoretical and Experimental Studies. Advanced Materials, 2018, 30, e1800191.	11.1	697
12	Energyâ€Saving Electrolytic Hydrogen Generation: Ni ₂ P Nanoarray as a Highâ€Performance Nonâ€Nobleâ€Metal Electrocatalyst. Angewandte Chemie - International Edition, 2017, 56, 842-846.	7.2	668
13	Ternary Fe _{<i>x</i>} Co _{1–<i>x</i>} P Nanowire Array as a Robust Hydrogen Evolution Reaction Electrocatalyst with Pt-like Activity: Experimental and Theoretical Insight. Nano Letters, 2016, 16, 6617-6621.	4.5	618
14	Enhanced Electrocatalysis for Energyâ€Efficient Hydrogen Production over CoP Catalyst with Nonelectroactive Zn as a Promoter. Advanced Energy Materials, 2017, 7, 1700020.	10.2	519
15	Au-Nanoparticle-Loaded Graphitic Carbon Nitride Nanosheets: Green Photocatalytic Synthesis and Application toward the Degradation of Organic Pollutants. ACS Applied Materials & amp; Interfaces, 2013, 5, 6815-6819.	4.0	493
16	Boosted Electrocatalytic N ₂ Reduction to NH ₃ by Defectâ€Rich MoS ₂ Nanoflower. Advanced Energy Materials, 2018, 8, 1801357.	10.2	482
17	Mn Doping of CoP Nanosheets Array: An Efficient Electrocatalyst for Hydrogen Evolution Reaction with Enhanced Activity at All pH Values. ACS Catalysis, 2017, 7, 98-102.	5.5	461
18	Ultrathin Graphitic Carbon Nitride Nanosheet: A Highly Efficient Fluorosensor for Rapid, Ultrasensitive Detection of Cu ²⁺ . Analytical Chemistry, 2013, 85, 5595-5599.	3.2	448

#	Article	IF	CITATIONS
19	Self-Supported FeP Nanorod Arrays: A Cost-Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity. ACS Catalysis, 2014, 4, 4065-4069.	5.5	419
20	NiCo ₂ S ₄ nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity. Nanoscale, 2015, 7, 15122-15126.	2.8	390
21	Electrodeposited Co-doped NiSe ₂ nanoparticles film: a good electrocatalyst for efficient water splitting. Nanoscale, 2016, 8, 3911-3915.	2.8	367
22	Highâ€Performance Electrolytic Oxygen Evolution in Neutral Media Catalyzed by a Cobalt Phosphate Nanoarray. Angewandte Chemie - International Edition, 2017, 56, 1064-1068.	7.2	348
23	Selfâ€Standing CoP Nanosheets Array: A Threeâ€Dimensional Bifunctional Catalyst Electrode for Overall Water Splitting in both Neutral and Alkaline Media. ChemElectroChem, 2017, 4, 1840-1845.	1.7	345
24	Mo ₂ C Nanoparticles Decorated Graphitic Carbon Sheets: Biopolymer-Derived Solid-State Synthesis and Application as an Efficient Electrocatalyst for Hydrogen Generation. ACS Catalysis, 2014, 4, 2658-2661.	5.5	343
25	An amorphous CoSe film behaves as an active and stable full water-splitting electrocatalyst under strongly alkaline conditions. Chemical Communications, 2015, 51, 16683-16686.	2.2	336
26	Ultrathin graphitic carbon nitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application. Nanoscale, 2013, 5, 8921.	2.8	321
27	A Zn-doped Ni ₃ S ₂ nanosheet array as a high-performance electrochemical water oxidation catalyst in alkaline solution. Chemical Communications, 2017, 53, 12446-12449.	2.2	315
28	A Mn-doped Ni ₂ P nanosheet array: an efficient and durable hydrogen evolution reaction electrocatalyst in alkaline media. Chemical Communications, 2017, 53, 11048-11051.	2.2	309
29	A Fe-doped Ni ₃ S ₂ particle film as a high-efficiency robust oxygen evolution electrode with very high current density. Journal of Materials Chemistry A, 2015, 3, 23207-23212.	5.2	308
30	Ultrathin graphitic carbon nitride nanosheets: a novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. Nanoscale, 2013, 5, 11604.	2.8	300
31	High-performance urea electrolysis towards less energy-intensive electrochemical hydrogen production using a bifunctional catalyst electrode. Journal of Materials Chemistry A, 2017, 5, 3208-3213.	5.2	295
32	Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: recent advances and future prospects. Journal of Materials Chemistry A, 2020, 8, 19729-19745.	5.2	295
33	Co(OH) ₂ Nanoparticleâ€Encapsulating Conductive Nanowires Array: Roomâ€Temperature Electrochemical Preparation for Highâ€Performance Water Oxidation Electrocatalysis. Advanced Materials, 2018, 30, 1705366.	11.1	294
34	In Situ Derived CoB Nanoarray: A Highâ€Efficiency and Durable 3D Bifunctional Electrocatalyst for Overall Alkaline Water Splitting. Small, 2017, 13, 1700805.	5.2	293
35	High-Performance N ₂ -to-NH ₃ Conversion Electrocatalyzed by Mo ₂ C Nanorod. ACS Central Science, 2019, 5, 116-121.	5.3	292
36	Cobalt nitride nanowire array as an efficient electrochemical sensor for glucose and H2O2 detection. Sensors and Actuators B: Chemical, 2018, 255, 1254-1261.	4.0	287

#	Article	IF	CITATIONS
37	CoP Nanosheet Arrays Supported on a Ti Plate: An Efficient Cathode for Electrochemical Hydrogen Evolution. Chemistry of Materials, 2014, 26, 4326-4329.	3.2	285
38	Tungsten Phosphide Nanorod Arrays Directly Grown on Carbon Cloth: A Highly Efficient and Stable Hydrogen Evolution Cathode at All pH Values. ACS Applied Materials & Interfaces, 2014, 6, 21874-21879.	4.0	279
39	Ni ₂ P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution cathode. Nanoscale, 2014, 6, 11031-11034.	2.8	277
40	Co-Doped CuO Nanoarray: An Efficient Oxygen Evolution Reaction Electrocatalyst with Enhanced Activity. ACS Sustainable Chemistry and Engineering, 2018, 6, 2883-2887.	3.2	277
41	Al-Doped CoP nanoarray: a durable water-splitting electrocatalyst with superhigh activity. Nanoscale, 2017, 9, 4793-4800.	2.8	268
42	Design and Application of Foams for Electrocatalysis. ChemCatChem, 2017, 9, 1721-1743.	1.8	245
43	Efficient Electrochemical Water Splitting Catalyzed by Electrodeposited Nickel Diselenide Nanoparticles Based Film. ACS Applied Materials & Interfaces, 2016, 8, 4718-4723.	4.0	239
44	Three-Dimensional Porous Supramolecular Architecture from Ultrathin g-C ₃ N ₄ Nanosheets and Reduced Graphene Oxide: Solution Self-Assembly Construction and Application as a Highly Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Materials & amp: Interfaces, 2014, 6, 1011-1017.	4.0	235
45	Ultrathin Graphitic C ₃ N ₄ Nanosheets/Graphene Composites: Efficient Organic Electrocatalyst for Oxygen Evolution Reaction. ChemSusChem, 2014, 7, 2125-2130.	3.6	232
46	High-Efficiency Electrochemical Hydrogen Evolution Catalyzed by Tungsten Phosphide Submicroparticles. ACS Catalysis, 2015, 5, 145-149.	5.5	231
47	CoP nanostructures with different morphologies: synthesis, characterization and a study of their electrocatalytic performance toward the hydrogen evolution reaction. Journal of Materials Chemistry A, 2014, 2, 14634.	5.2	227
48	Microwave-assisted rapid green synthesis of photoluminescent carbon nanodots from flour and their applications for sensitive and selective detection of mercury(II) ions. Sensors and Actuators B: Chemical, 2013, 184, 156-162.	4.0	226
49	A porous Ni ₃ N nanosheet array as a high-performance non-noble-metal catalyst for urea-assisted electrochemical hydrogen production. Inorganic Chemistry Frontiers, 2017, 4, 1120-1124.	3.0	225
50	Self-supported NiMo hollow nanorod array: an efficient 3D bifunctional catalytic electrode for overall water splitting. Journal of Materials Chemistry A, 2015, 3, 20056-20059.	5.2	218
51	Selective phosphidation: an effective strategy toward CoP/CeO ₂ interface engineering for superior alkaline hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 1985-1990.	5.2	212
52	Efficient Electrochemical N ₂ Reduction to NH ₃ on MoN Nanosheets Array under Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2018, 6, 9550-9554.	3.2	210
53	Three-Dimensional Ni ₂ P Nanoarray: An Efficient Catalyst Electrode for Sensitive and Selective Nonenzymatic Glucose Sensing with High Specificity. Analytical Chemistry, 2016, 88, 7885-7889.	3.2	209
54	A self-standing nanoporous MoP ₂ nanosheet array: an advanced pH-universal catalytic electrode for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 7169-7173.	5.2	204

#	Article	IF	CITATIONS
55	MnO2-CoP3 nanowires array: An efficient electrocatalyst for alkaline oxygen evolution reaction with enhanced activity. Electrochemistry Communications, 2018, 86, 161-165.	2.3	202
56	Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts. Catalysis Science and Technology, 2016, 6, 5238-5261.	2.1	198
57	Fabrication of hierarchical CoP nanosheet@microwire arrays <i>via</i> space-confined phosphidation toward high-efficiency water oxidation electrocatalysis under alkaline conditions. Nanoscale, 2018, 10, 7941-7945.	2.8	197
58	In situ formation of a 3D core/shell structured Ni ₃ N@Ni–Bi nanosheet array: an efficient non-noble-metal bifunctional electrocatalyst toward full water splitting under near-neutral conditions. Journal of Materials Chemistry A, 2017, 5, 7806-7810.	5.2	196
59	Green, low-cost synthesis of photoluminescent carbon dots by hydrothermal treatment of willow bark and their application as an effective photocatalyst for fabricating Au nanoparticles–reduced graphene oxide nanocomposites for glucose detection. Catalysis Science and Technology, 2013, 3, 1027.	2.1	193
60	Fe-Doped Ni ₂ P Nanosheet Array for High-Efficiency Electrochemical Water Oxidation. Inorganic Chemistry, 2017, 56, 1041-1044.	1.9	193
61	P-Doped Ag Nanoparticles Embedded in N-Doped Carbon Nanoflake: An Efficient Electrocatalyst for the Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 4499-4503.	3.2	193
62	A hierarchical CuO@NiCo layered double hydroxide core–shell nanoarray as an efficient electrocatalyst for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2021, 8, 3049-3054.	3.0	191
63	Activated carbon nanotubes: a highly-active metal-free electrocatalyst for hydrogen evolution reaction. Chemical Communications, 2014, 50, 9340-9342.	2.2	187
64	Green synthesis of plant supported Cu Ag and Cu Ni bimetallic nanoparticles in the reduction of nitrophenols and organic dyes for water treatment. Journal of Molecular Liquids, 2018, 260, 78-91.	2.3	187
65	NiS2 nanosheets array grown on carbon cloth as an efficient 3D hydrogen evolution cathode. Electrochimica Acta, 2015, 153, 508-514.	2.6	185
66	Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting. Nano Research, 2016, 9, 3346-3354.	5.8	184
67	Metal Organic Frameworks as Versatile Hosts of Au Nanoparticles in Heterogeneous Catalysis. ACS Catalysis, 2017, 7, 2896-2919.	5.5	184
68	Engineering UiOâ€66 Metal Organic Framework for Heterogeneous Catalysis. ChemCatChem, 2019, 11, 899-923.	1.8	182
69	CoSe ₂ Nanowires Array as a 3D Electrode for Highly Efficient Electrochemical Hydrogen Evolution. ACS Applied Materials & Interfaces, 2015, 7, 3877-3881.	4.0	174
70	An amorphous Co-carbonate-hydroxide nanowire array for efficient and durable oxygen evolution reaction in carbonate electrolytes. Nanoscale, 2017, 9, 16612-16615.	2.8	173
71	High-Efficiency Electrosynthesis of Ammonia with High Selectivity under Ambient Conditions Enabled by VN Nanosheet Array. ACS Sustainable Chemistry and Engineering, 2018, 6, 9545-9549.	3.2	170
72	A Costâ€Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity: FeP Nanowire Array as the Active Phase. Angewandte Chemie, 2014, 126, 13069-13073.	1.6	168

#	Article	IF	CITATIONS
73	Ni3S2 nanosheets array supported on Ni foam: A novel efficient three-dimensional hydrogen-evolving electrocatalyst in both neutral and basic solutions. International Journal of Hydrogen Energy, 2015, 40, 4727-4732.	3.8	167
74	FeP Nanoparticles Film Grown on Carbon Cloth: An Ultrahighly Active 3D Hydrogen Evolution Cathode in Both Acidic and Neutral Solutions. ACS Applied Materials & Interfaces, 2014, 6, 20579-20584.	4.0	166
75	Enhanced electrooxidation of urea using NiMoO4·xH2O nanosheet arrays on Ni foam as anode. Electrochimica Acta, 2015, 153, 456-460.	2.6	159
76	Recent Advances in 1D Electrospun Nanocatalysts for Electrochemical Water Splitting. Small Structures, 2021, 2, 2000048.	6.9	157
77	Self-supported CoP nanosheet arrays: a non-precious metal catalyst for efficient hydrogen generation from alkaline NaBH ₄ solution. Journal of Materials Chemistry A, 2016, 4, 13053-13057.	5.2	154
78	Nickel promoted cobalt disulfide nanowire array supported on carbon cloth: An efficient and stable bifunctional electrocatalyst for full water splitting. Electrochemistry Communications, 2016, 63, 60-64.	2.3	154
79	Acidically oxidized carbon cloth: a novel metal-free oxygen evolution electrode with high catalytic activity. Chemical Communications, 2015, 51, 1616-1619.	2.2	153
80	Sulfur-doped graphene for efficient electrocatalytic N ₂ -to-NH ₃ fixation. Chemical Communications, 2019, 55, 3371-3374.	2.2	152
81	Template-assisted synthesis of CoP nanotubes to efficiently catalyze hydrogen-evolving reaction. Journal of Materials Chemistry A, 2014, 2, 14812-14816.	5.2	147
82	3D macroporous MoS2 thin film: in situ hydrothermal preparation and application as a highly active hydrogen evolution electrocatalyst at all pH values. Electrochimica Acta, 2015, 168, 133-138.	2.6	147
83	Metal–organic frameworks for solar energy conversion by photoredox catalysis. Coordination Chemistry Reviews, 2018, 373, 83-115.	9.5	146
84	Recent advances in emerging 2D nanomaterials for biosensing and bioimaging applications. Materials Today, 2018, 21, 164-177.	8.3	145
85	Ni ₃ Se ₂ film as a non-precious metal bifunctional electrocatalyst for efficient water splitting. Catalysis Science and Technology, 2015, 5, 4954-4958.	2.1	144
86	Copperâ€Nitride Nanowires Array: An Efficient Dualâ€Functional Catalyst Electrode for Sensitive and Selective Nonâ€Enzymatic Glucose and Hydrogen Peroxide Sensing. Chemistry - A European Journal, 2017, 23, 4986-4989.	1.7	140
87	Energyâ€ S aving Electrolytic Hydrogen Generation: Ni ₂ P Nanoarray as a Highâ€Performance Nonâ€Nobleâ€Metal Electrocatalyst. Angewandte Chemie, 2017, 129, 860-864.	1.6	140
88	Integrating natural biomass electro-oxidation and hydrogen evolution: using a porous Fe-doped CoP nanosheet array as a bifunctional catalyst. Chemical Communications, 2017, 53, 5710-5713.	2.2	138
89	Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Research, 2021, 14, 555-569.	5.8	137
90	Characterization of a novel natural cellulosic fiber from Calotropis gigantea fruit bunch for ecofriendly polymer composites. International Journal of Biological Macromolecules, 2020, 150, 793-801.	3.6	135

#	Article	IF	CITATIONS
91	NiCoP Nanoarray: A Superior Pseudocapacitor Electrode with High Areal Capacitance. Chemistry - A European Journal, 2017, 23, 4435-4441.	1.7	134
92	Cu(OH) ₂ @CoCO ₃ (OH) ₂ · <i>n</i> H ₂ O Core–Shell Heterostructure Nanowire Array: An Efficient 3D Anodic Catalyst for Oxygen Evolution and Methanol Electrooxidation. Small, 2017, 13, 1602755.	5.2	133
93	Three-Dimensional Structures of MoS ₂ @Ni Core/Shell Nanosheets Array toward Synergetic Electrocatalytic Water Splitting. ACS Applied Materials & Interfaces, 2016, 8, 14521-14526.	4.0	132
94	Highly Selective Electrochemical Reduction of CO ₂ to Alcohols on an FeP Nanoarray. Angewandte Chemie - International Edition, 2020, 59, 758-762.	7.2	132
95	Metal–Organic Framework Enhances Aggregation-Induced Fluorescence of Chlortetracycline and the Application for Detection. Analytical Chemistry, 2019, 91, 5913-5921.	3.2	130
96	An amorphous FeMoS ₄ nanorod array toward efficient hydrogen evolution electrocatalysis under neutral conditions. Chemical Communications, 2017, 53, 9000-9003.	2.2	124
97	An Fe(TCNQ) ₂ nanowire array on Fe foil: an efficient non-noble-metal catalyst for the oxygen evolution reaction in alkaline media. Chemical Communications, 2018, 54, 2300-2303.	2.2	120
98	Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3. Nano Research, 2019, 12, 919-924.	5.8	120
99	Catalysis by metal–organic frameworks in water. Chemical Communications, 2014, 50, 12800-12814.	2.2	117
100	Fe ₃ Nâ€Co ₂ N Nanowires Array: A Nonâ€Nobleâ€Metal Bifunctional Catalyst Electrode for Highâ€Performance Glucose Oxidation and H ₂ O ₂ Reduction toward Nonâ€Enzymatic Sensing Applications. Chemistry - A European Journal, 2017, 23, 5214-5218.	1.7	117
101	Tungsten nitride nanorods array grown on carbon cloth as an efficient hydrogen evolution cathode at all pH values. Electrochimica Acta, 2015, 154, 345-351.	2.6	116
102	Highly-active oxygen evolution electrocatalyzed by a Fe-doped NiSe nanoflake array electrode. Chemical Communications, 2016, 52, 4529-4532.	2.2	116
103	A self-supported NiMoS ₄ nanoarray as an efficient 3D cathode for the alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 16585-16589.	5.2	114
104	Graphitic carbon nitride nanosheets: one-step, high-yield synthesis and application for Cu ²⁺ detection. Analyst, The, 2014, 139, 5065-5068.	1.7	111
105	One-step electrodeposition of Ni–Co–S nanosheets film as a bifunctional electrocatalyst for efficient water splitting. International Journal of Hydrogen Energy, 2016, 41, 7264-7269.	3.8	107
106	An MnO ₂ –Ti ₃ C ₂ T _x MXene nanohybrid: an efficient and durable electrocatalyst toward artificial N ₂ fixation to NH ₃ under ambient conditions. Journal of Materials Chemistry A, 2019, 7, 18823-18827.	5.2	107
107	Sulfur dots–graphene nanohybrid: a metal-free electrocatalyst for efficient N ₂ -to-NH ₃ fixation under ambient conditions. Chemical Communications, 2019, 55, 3152-3155.	2.2	106
108	Interconnected urchin-like cobalt phosphide microspheres film for highly efficient electrochemical hydrogen evolution in both acidic and basic media. Journal of Materials Chemistry A, 2016, 4, 10114-10117.	5.2	103

#	Article	IF	CITATIONS
109	Cu/(Cu(OH) 2 -CuO) core/shell nanorods array: in-situ growth and application as an efficient 3D oxygen evolution anode. Electrochimica Acta, 2015, 163, 102-106.	2.6	101
110	Energy-efficient electrolytic hydrogen generation using a Cu ₃ P nanoarray as a bifunctional catalyst for hydrazine oxidation and water reduction. Inorganic Chemistry Frontiers, 2017, 4, 420-423.	3.0	101
111	Superior hydrogen evolution electrocatalysis enabled by CoP nanowire array on graphite felt. International Journal of Hydrogen Energy, 2022, 47, 3580-3586.	3.8	101
112	Zn0.76Co0.24S/CoS2 nanowires array for efficient electrochemical splitting of water. Electrochimica Acta, 2016, 190, 360-364.	2.6	99
113	Ternary NiCoP nanosheet array on a Ti mesh: a high-performance electrochemical sensor for glucose detection. Chemical Communications, 2016, 52, 14438-14441.	2.2	98
114	An Fe-MOF nanosheet array with superior activity towards the alkaline oxygen evolution reaction. Inorganic Chemistry Frontiers, 2018, 5, 1405-1408.	3.0	97
115	Hierarchical CuO@ZnCo LDH heterostructured nanowire arrays toward enhanced water oxidation electrocatalysis. Nanoscale, 2020, 12, 5359-5362.	2.8	97
116	Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis. Green Chemistry, 2021, 23, 2834-2867.	4.6	96
117	Bimetallic Nickelâ€Substituted Cobaltâ€Borate Nanowire Array: An Earthâ€Abundant Water Oxidation Electrocatalyst with Superior Activity and Durability at Near Neutral pH. Small, 2017, 13, 1700394.	5.2	95
118	Cobalt phosphide nanowire array as an effective electrocatalyst for non-enzymatic glucose sensing. Journal of Materials Chemistry B, 2017, 5, 1901-1904.	2.9	94
119	Tuneable nature of metal organic frameworks as heterogeneous solid catalysts for alcohol oxidation. Chemical Communications, 2017, 53, 10851-10869.	2.2	94
120	Mn3O4 nanoparticles@reduced graphene oxide composite: An efficient electrocatalyst for artificial N2 fixation to NH3 at ambient conditions. Nano Research, 2019, 12, 1093-1098.	5.8	93
121	Cobalt phosphide nanoparticles film growth on carbon cloth: A high-performance cathode for electrochemical hydrogen evolution. International Journal of Hydrogen Energy, 2014, 39, 16806-16811.	3.8	90
122	Three-dimensional interconnected network of nanoporous CoP nanowires as an efficient hydrogen evolution cathode. Physical Chemistry Chemical Physics, 2014, 16, 16909.	1.3	90
123	A Ni ₂ P nanosheet array integrated on 3D Ni foam: an efficient, robust and reusable monolithic catalyst for the hydrolytic dehydrogenation of ammonia borane toward on-demand hydrogen generation. Journal of Materials Chemistry A, 2016, 4, 12407-12410.	5.2	90
124	Spinel LiMn ₂ O ₄ Nanofiber: An Efficient Electrocatalyst for N ₂ Reduction to NH ₃ under Ambient Conditions. Inorganic Chemistry, 2019, 58, 9597-9601.	1.9	90
125	CoP nanoarray: a robust non-noble-metal hydrogen-generating catalyst toward effective hydrolysis of ammonia borane. Inorganic Chemistry Frontiers, 2017, 4, 659-662.	3.0	88
126	Amorphous Ni-B alloy nanoparticle film on Ni foam: rapid alternately dipping deposition for efficient overall water splitting. Nanotechnology, 2016, 27, 12LT01.	1.3	86

#	Article	IF	CITATIONS
127	Rapid, sensitive, and selective fluorescent DNA detection using iron-based metal–organic framework nanorods: Synergies of the metal center and organic linker. Biosensors and Bioelectronics, 2015, 71, 1-6.	5.3	83
128	Alkylthiol surface engineering: an effective strategy toward enhanced electrocatalytic N ₂ -to-NH ₃ fixation by a CoP nanoarray. Journal of Materials Chemistry A, 2021, 9, 13861-13866.	5.2	83
129	In situ electrochemical surface derivation of cobalt phosphate from a Co(CO ₃) _{0.5} (OH)·0.11H ₂ O nanoarray for efficient water oxidation in neutral aqueous solution. Nanoscale, 2017, 9, 3752-3756.	2.8	82
130	Ultrathin graphitic C3N4 nanofibers: Hydrolysis-driven top-down rapid synthesis and application as a novel fluorosensor for rapid, sensitive, and selective detection of Fe3+. Sensors and Actuators B: Chemical, 2015, 216, 453-460.	4.0	81
131	Electrodeposited Niâ€P Alloy Nanoparticle Films for Efficiently Catalyzing Hydrogen―and Oxygenâ€Evolution Reactions. ChemNanoMat, 2015, 1, 558-561.	1.5	80
132	Cellulose Derived Graphene/Polyaniline Nanocomposite Anode for Energy Generation and Bioremediation of Toxic Metals via Benthic Microbial Fuel Cells. Polymers, 2021, 13, 135.	2.0	80
133	Nitrogen-doped carbon nanotube supported iron phosphide nanocomposites for highly active electrocatalysis of the hydrogen evolution reaction. Electrochimica Acta, 2014, 149, 324-329.	2.6	79
134	A nickel-borate nanoarray: a highly active 3D oxygen-evolving catalyst electrode operating in near-neutral water. Chemical Communications, 2017, 53, 3070-3073.	2.2	79
135	A cobalt-borate nanosheet array: an efficient and durable non-noble-metal electrocatalyst for water oxidation at near neutral pH. Journal of Materials Chemistry A, 2017, 5, 7305-7308.	5.2	79
136	Monolithically integrated copper phosphide nanowire: An efficient electrocatalyst for sensitive and selective nonenzymatic glucose detection. Sensors and Actuators B: Chemical, 2017, 244, 11-16.	4.0	79
137	Efficient Hydrogen Evolution Electrocatalysis at Alkaline pH by Interface Engineering of Ni ₂ P–CeO ₂ . Inorganic Chemistry, 2018, 57, 548-552.	1.9	78
138	Electrocatalytic N ₂ -to-NH ₃ conversion using oxygen-doped graphene: experimental and theoretical studies. Chemical Communications, 2019, 55, 7502-7505.	2.2	78
139	Green synthesis of carbon nanodots as an effective fluorescent probe for sensitive and selective detection of mercury(II) ions. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	75
140	A perovskite La ₂ Ti ₂ O ₇ nanosheet as an efficient electrocatalyst for artificial N ₂ fixation to NH ₃ in acidic media. Chemical Communications, 2019, 55, 6401-6404.	2.2	74
141	Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays. Nano Research, 2022, 15, 1039-1046.	5.8	74
142	Interconnected Coâ€Entrapped, Nâ€Doped Carbon Nanotube Film as Active Hydrogen Evolution Cathode over the Whole pH Range. ChemSusChem, 2015, 8, 1850-1855.	3.6	73
143	Hierarchical nickel oxide nanosheet@nanowire arrays on nickel foam: an efficient 3D electrode for methanol electro-oxidation. Catalysis Science and Technology, 2016, 6, 1157-1161.	2.1	73
144	Hydrazine-assisted electrolytic hydrogen production: CoS ₂ nanoarray as a superior bifunctional electrocatalyst. New Journal of Chemistry, 2017, 41, 4754-4757.	1.4	70

#	Article	IF	CITATIONS
145	Facilitating Active Species Generation by Amorphous NiFeâ€B _i Layer Formation on NiFe‣DH Nanoarray for Efficient Electrocatalytic Oxygen Evolution at Alkaline pH. Chemistry - A European Journal, 2017, 23, 11499-11503.	1.7	69
146	In situ surface derivation of an Fe–Co–Bi layer on an Fe-doped Co ₃ O ₄ nanoarray for efficient water oxidation electrocatalysis under near-neutral conditions. Journal of Materials Chemistry A, 2017, 5, 6388-6392.	5.2	68
147	High-efficiency electrohydrogenation of nitric oxide to ammonia on a Ni ₂ P nanoarray under ambient conditions. Journal of Materials Chemistry A, 2021, 9, 24268-24275.	5.2	68
148	Lead sensors development and antimicrobial activities based on graphene oxide/carbon nanotube/poly(O-toluidine) nanocomposite. International Journal of Biological Macromolecules, 2016, 89, 198-205.	3.6	67
149	Extraction and characterization of natural fiber from Eleusine indica grass as reinforcement of sustainable fiber reinforced polymer composites. Journal of Natural Fibers, 2021, 18, 1742-1750.	1.7	67
150	Highâ€Performance Electrolytic Oxygen Evolution in Neutral Media Catalyzed by a Cobalt Phosphate Nanoarray. Angewandte Chemie, 2017, 129, 1084-1088.	1.6	65
151	Ultrafine PtO ₂ nanoparticles coupled with a Co(OH)F nanowire array for enhanced hydrogen evolution. Chemical Communications, 2018, 54, 810-813.	2.2	65
152	Effect of cellulose nano fibers and nano clays on the mechanical, morphological, thermal and dynamic mechanical performance of kenaf/epoxy composites. Carbohydrate Polymers, 2020, 239, 116248.	5.1	65
153	Replacing Oxygen Evolution with Hydrazine Oxidation at the Anode for Energyâ€ S aving Electrolytic Hydrogen Production. ChemElectroChem, 2017, 4, 481-484.	1.7	63
154	NiS2 nanosheet array: A high-active bifunctional electrocatalyst for hydrazine oxidation and water reduction toward energy-efficient hydrogen production. Materials Today Energy, 2017, 3, 9-14.	2.5	63
155	Ni2P nanosheet array for high-efficiency electrohydrogenation of nitrite to ammonia at ambient conditions. Journal of Colloid and Interface Science, 2022, 606, 1055-1063.	5.0	62
156	Highly efficient electrochemical hydrogen evolution based on nickel diselenide nanowall film. Nanotechnology, 2016, 27, 20LT02.	1.3	61
157	All-inorganic perovskite quantum dots CsPbX3 (Br/I) for highly sensitive and selective detection of explosive picric acid. Chemical Engineering Journal, 2020, 379, 122360.	6.6	61
158	Interconnected Network of Core–Shell CoP@CoBiPi for Efficient Water Oxidation Electrocatalysis under Near Neutral Conditions. ChemSusChem, 2017, 10, 1370-1374.	3.6	59
159	Efficient electrochemical water splitting catalyzed by electrodeposited NiFe nanosheets film. International Journal of Hydrogen Energy, 2016, 41, 8785-8792.	3.8	58
160	Homologous Catalysts Based on Feâ€Doped CoP Nanoarrays for Highâ€Performance Full Water Splitting under Benign Conditions. ChemSusChem, 2017, 10, 3188-3192.	3.6	58
161	Cathodic electrochemical activation of Co ₃ O ₄ nanoarrays: a smart strategy to significantly boost the hydrogen evolution activity. Chemical Communications, 2018, 54, 2150-2153.	2.2	58
162	Characterization of Natural Fibers from <i>Cortaderia Selloana</i> Grass (Pampas) as Reinforcement Material for the Production of the Composites. Journal of Natural Fibers, 2021, 18, 1893-1901.	1.7	58

#	Article	IF	CITATIONS
163	High-efficiency nitrate electroreduction to ammonia on electrodeposited cobalt–phosphorus alloy film. Chemical Communications, 2021, 57, 9720-9723.	2.2	58
164	Benzoate Anionâ€Intercalated Layered Cobalt Hydroxide Nanoarray: An Efficient Electrocatalyst for the Oxygen Evolution Reaction. ChemSusChem, 2017, 10, 4004-4008.	3.6	56
165	Self-standing Ni-WN heterostructure nanowires array: A highly efficient catalytic cathode for hydrogen evolution reaction in alkaline solution. Electrochimica Acta, 2016, 210, 729-733.	2.6	55
166	Highâ€Performance Nonâ€Enzyme Hydrogen Peroxide Detection in Neutral Solution: Using a Nickel Borate Nanoarray as a 3D Electrochemical Sensor. Chemistry - A European Journal, 2017, 23, 16179-16183.	1.7	55
167	High-Efficiency and Durable Water Oxidation under Mild pH Conditions: An Iron Phosphate–Borate Nanosheet Array as a Non-Noble-Metal Catalyst Electrode. Inorganic Chemistry, 2017, 56, 3131-3135.	1.9	51
168	Surface Amorphization: A Simple and Effective Strategy toward Boosting the Electrocatalytic Activity for Alkaline Water Oxidation. ACS Sustainable Chemistry and Engineering, 2017, 5, 8518-8522.	3.2	51
169	Enhanced H 2 generation from NaBH 4 hydrolysis and methanolysis by cellulose micro-fibrous cottons as metal templated catalyst. International Journal of Hydrogen Energy, 2018, 43, 6539-6550.	3.8	50
170	A NiCo ₂ O ₄ @Ni–Co–Ci core–shell nanowire array as an efficient electrocatalyst for water oxidation at near-neutral pH. Chemical Communications, 2017, 53, 7812-7815.	2.2	49
171	Bimetallic NiCoP Nanosheets Array for High-Performance Urea Electro-Oxidation and Less Energy-Intensive Electrolytic Hydrogen Production. ChemistrySelect, 2017, 2, 10285-10289.	0.7	49
172	<i>In situ</i> development of amorphous Mn–Co–P shell on MnCo ₂ O ₄ nanowire array for superior oxygen evolution electrocatalysis in alkaline media. Chemical Communications, 2018, 54, 1077-1080.	2.2	49
173	Extraction and Characterization of Natural Fibers from <i>Citrullus lanatus</i> Climber. Journal of Natural Fibers, 2022, 19, 621-629.	1.7	49
174	Nickel–iron foam as a three-dimensional robust oxygen evolution electrode with high activity. International Journal of Hydrogen Energy, 2015, 40, 13258-13263.	3.8	48
175	Core–Shell NiFe-LDH@NiFe-B _i Nanoarray: In Situ Electrochemical Surface Derivation Preparation toward Efficient Water Oxidation Electrocatalysis in near-Neutral Media. ACS Applied Materials & Interfaces, 2017, 9, 19502-19506.	4.0	48
176	Selfâ€Templating Construction of Hollow Amorphous CoMoS ₄ Nanotube Array towards Efficient Hydrogen Evolution Electrocatalysis at Neutral pH. Chemistry - A European Journal, 2017, 23, 12718-12723.	1.7	48
177	Sensor development of 1,2 Dichlorobenzene based on polypyrole/Cu-doped ZnO (PPY/CZO) nanocomposite embedded silver electrode and their antimicrobial studies. International Journal of Biological Macromolecules, 2017, 98, 256-267.	3.6	47
178	A nickel–borate–phosphate nanoarray for efficient and durable water oxidation under benign conditions. Inorganic Chemistry Frontiers, 2017, 4, 840-844.	3.0	46
179	Electro-catalyst based on cerium doped cobalt oxide for oxygen evolution reaction in electrochemical water splitting. Journal of Materials Science: Materials in Electronics, 2016, 27, 5294-5302.	1.1	44
180	Topotactic Conversion of α-Fe ₂ O ₃ Nanowires into FeP as a Superior Fluorosensor for Nucleic Acid Detection: Insights from Experiment and Theory. Analytical Chemistry, 2017, 89, 2191-2195.	3.2	44

#	Article	IF	CITATIONS
181	Hierarchical CoTe ₂ Nanowire Array: An Effective Oxygen Evolution Catalyst in Alkaline Media. ACS Sustainable Chemistry and Engineering, 2018, 6, 4481-4485.	3.2	44
182	Threeâ€Ðimensional Nickel–Borate Nanosheets Array for Efficient Oxygen Evolution at Nearâ€Neutral pH. Chemistry - A European Journal, 2017, 23, 6959-6963.	1.7	43
183	Optimization of Glucose Powered Biofuel Cell Anode Developed by Polyaniline-Silver as Electron Transfer Enhancer and Ferritin as Biocompatible Redox Mediator. Scientific Reports, 2017, 7, 12703.	1.6	43
184	Arylnaphthalene lactone analogues: synthesis and development as excellent biological candidates for future drug discovery. RSC Advances, 2018, 8, 9487-9502.	1.7	43
185	Chemical sensor development based on poly(o-anisidine)silverized–MWCNT nanocomposites deposited on glassy carbon electrodes for environmental remediation. RSC Advances, 2015, 5, 71370-71378.	1.7	42
186	Plantâ€supported silver nanoparticles: Efficient, economically viable and easily recoverable catalyst for the reduction of organic pollutants. Applied Organometallic Chemistry, 2019, 33, e4971.	1.7	40
187	Hematite nanorods array on carbon cloth as an efficient 3D oxygen evolution anode. Electrochemistry Communications, 2014, 49, 21-24.	2.3	39
188	Effective hydrolysis of sodium borohydride driven by self-supported cobalt oxide nanorod array for on-demand hydrogen generation. Catalysis Communications, 2016, 87, 94-97.	1.6	39
189	Co-based nanowire films as complementary hydrogen- and oxygen-evolving electrocatalysts in neutral electrolyte. Catalysis Science and Technology, 2017, 7, 2689-2694.	2.1	39
190	FeMoO ₄ nanorod array: a highly active 3D anode for water oxidation under alkaline conditions. Inorganic Chemistry Frontiers, 2018, 5, 665-668.	3.0	39
191	In situ growth of nickel selenide nanowire arrays on nickel foil for methanol electro-oxidation in alkaline media. RSC Advances, 2015, 5, 87051-87054.	1.7	38
192	Extraction and Characterization of Cellulose Fibers from the Stem of <i>Momordica Charantia</i> . Journal of Natural Fibers, 2022, 19, 2232-2242.	1.7	38
193	Preparation of polyaniline grafted graphene oxide–WO ₃ nanocomposite and its application as a chromium(<scp>iii</scp>) chemi-sensor. RSC Advances, 2015, 5, 105169-105178.	1.7	37
194	Low dimensional Ni-ZnO nanoparticles as marker of toxic lead ions for environmental remediation. Journal of Industrial and Engineering Chemistry, 2014, 20, 1071-1078.	2.9	36
195	Preparation and properties of novel sol-gel-derived quaternized poly(n-methyl pyrrole)/Sn(II)SiO3/CNT composites. Journal of Solid State Electrochemistry, 2015, 19, 1479-1489.	1.2	36
196	Bio-composite film from corn starch based vetiver cellulose. Journal of Natural Fibers, 2022, 19, 14634-14644.	1.7	36
197	Facile synthesis of doped ZnO-CdO nanoblocks as solid-phase adsorbent and efficient solar photo-catalyst applications. Journal of Industrial and Engineering Chemistry, 2014, 20, 2278-2286.	2.9	34
198	Remarkable enhancement of the alkaline oxygen evolution reaction activity of NiCo ₂ O ₄ by an amorphous borate shell. Inorganic Chemistry Frontiers, 2017, 4, 1546-1550.	3.0	34

#	Article	IF	CITATIONS
199	Effect of TiC Nanoparticles Reinforcement in Coir Fiber Based Bio/Synthetic Epoxy Hybrid Composites: Mechanical and Thermal Characteristics. Journal of Polymers and the Environment, 2021, 29, 2609-2627.	2.4	34
200	Effect of alkali treatment on performance characterization of <i>Ziziphus mauritiana fiber</i> and its epoxy composites. Journal of Industrial Textiles, 2022, 51, 2444S-2466S.	1.1	33
201	Mechanical and Thermal Properties of Chloris barbata flower fiber /Epoxy Composites: Effect of Alkali treatment and Fiber weight fraction. Journal of Natural Fibers, 2022, 19, 3453-3466.	1.7	33
202	Sol–gel synthesis and characterization of conducting polythiophene/tin phosphate nano tetrapod composite cation-exchanger and its application as Hg(II) selective membrane electrode. Journal of Sol-Gel Science and Technology, 2013, 65, 160-169.	1.1	32
203	Nâ€Đoped Carbonâ€Coated Tungsten Oxynitride Nanowire Arrays for Highly Efficient Electrochemical Hydrogen Evolution. ChemSusChem, 2015, 8, 2487-2491.	3.6	32
204	Core–Shellâ€ S tructured NiS ₂ @Niâ€B _i Nanoarray for Efficient Water Oxidation at Nearâ€Neutral pH. ChemCatChem, 2017, 9, 3138-3143.	1.8	32
205	Reduced graphene oxide supported ZIF-67 derived CoP enables high-performance potassium ion storage. Journal of Colloid and Interface Science, 2021, 604, 319-326.	5.0	32
206	CaMoO4 nanosheet arrays for efficient and durable water oxidation electrocatalysis under alkaline conditions. Chemical Communications, 2018, 54, 5066-5069.	2.2	30
207	Co ₃ O ₄ Nanowire Arrays toward Superior Water Oxidation Electrocatalysis in Alkaline Media by Surface Amorphization. Chemistry - A European Journal, 2017, 23, 15601-15606.	1.7	29
208	Fluorescent Copper Nanoclusters for the Iodide-Enhanced Detection of Hypochlorous Acid. ACS Applied Nano Materials, 2020, 3, 312-318.	2.4	29
209	CoTe nanoparticle-embedded N-doped hollow carbon polyhedron: an efficient catalyst for H ₂ O ₂ electrosynthesis in acidic media. Journal of Materials Chemistry A, 2021, 9, 21703-21707.	5.2	29
210	Cobalt phosphide nanowires: an efficient electrocatalyst for enzymeless hydrogen peroxide detection. Nanotechnology, 2016, 27, 33LT01.	1.3	28
211	Electrochemical Hydrazine Oxidation Catalyzed by Iron Phosphide Nanosheets Array toward Energyâ€Efficient Electrolytic Hydrogen Production from Water. ChemistrySelect, 2017, 2, 3401-3407.	0.7	28
212	Highly efficient and durable water oxidation in a near-neutral carbonate electrolyte electrocatalyzed by a core–shell structured NiO@Ni–Ci nanosheet array. Sustainable Energy and Fuels, 2017, 1, 1287-1291.	2.5	27
213	Sensitive detection and imaging of endogenous peroxynitrite using a benzo[d]thiazole derived cyanine probe. Talanta, 2019, 196, 345-351.	2.9	27
214	Highly Selective Electrochemical Reduction of CO ₂ to Alcohols on an FeP Nanoarray. Angewandte Chemie, 2020, 132, 768-772.	1.6	26
215	Effect of <scp>TiC</scp> nanoparticles on accelerated weathering of coir fiber filler and basalt fabric reinforced bio/synthetic epoxy hybrid composites: Physicomechanical and thermal characteristics. Polymer Composites, 2021, 42, 4897-4910.	2.3	26
216	Ternary Nanocomposites of Porphyrin, Angular Au Nanoparticles and Reduced Graphene Oxide: Photocatalytic Synthesis and Enhanced Photocurrent Generation. ChemCatChem, 2012, 4, 1079-1083.	1.8	25

#	Article	IF	CITATIONS
217	Socio-economic demands and challenges for non-invasive disease diagnosis through a portable breathalyzer by the incorporation of 2D nanosheets and SMO nanocomposites. RSC Advances, 2021, 11, 21216-21234.	1.7	25
218	Novel synthesis of Au nanoparticles using fluorescent carbon nitride dots as photocatalyst. Gold Bulletin, 2012, 45, 61-67.	1.1	24
219	Interaction of the Amphiphilic Drug Amitriptyline Hydrochloride with Gemini and Conventional Surfactants: A Physicochemical Approach. Journal of Solution Chemistry, 2013, 42, 1532-1544.	0.6	24
220	Fluorescent MUA-stabilized Au nanoclusters for sensitive and selective detection of penicillamine. Analytical and Bioanalytical Chemistry, 2018, 410, 2629-2636.	1.9	24
221	Nanoparticles Addition in Coirâ€Basaltâ€Innegra Fibers Reinforced Bio-synthetic Epoxy Composites. Journal of Polymers and the Environment, 2021, 29, 3561-3573.	2.4	24
222	In vitro studies of carbon fiber microbiosensor for dopamine neurotransmitter supported by copper-graphene oxide composite. Mikrochimica Acta, 2014, 181, 1049-1057.	2.5	22
223	Preparation and Characterization of hybrid graphene oxide composite and its application in paracetamol microbiosensor. Polymer Composites, 2015, 36, 221-228.	2.3	22
224	Anion-exchange synthesis of a nanoporous crystalline CoB ₂ O ₄ nanowire array for high-performance water oxidation electrocatalysis in borate solution. Nanoscale, 2017, 9, 12343-12347.	2.8	21
225	Oxygenâ€Doped Porous Carbon Nanosheet for Efficient N ₂ Fixation to NH ₃ at Ambient Conditions. ChemistrySelect, 2019, 4, 3547-3550.	0.7	21
226	Toward Facile Preparation and Design of Mulberry-Shaped Poly(2-methylaniline)-Ce ₂ (WO ₄) ₃ @CNT Nanocomposite and Its Application for Electrochemical Cd ²⁺ Ion Detection for Environment Remediation. Polymer-Plastics Technology and Engineering, 2018, 57, 335-345.	1.9	20
227	BCNO nanoparticles: A novel highly efficient fluorosensor for ultrarapid detection of Cu2+. Sensors and Actuators B: Chemical, 2014, 194, 492-497.	4.0	19
228	Cobalt phosphide nanowall arrays supported on carbon cloth: an efficient monolithic non-noble-metal hydrogen evolution catalyst. Nanotechnology, 2016, 27, 475702.	1.3	19
229	A green-nanocomposite film based on poly(vinyl alcohol)/ <i>Eleusine coracana</i> : structural, thermal, and morphological properties. International Journal of Polymer Analysis and Characterization, 2019, 24, 257-265.	0.9	19
230	Novel Aminosilane (APTES)-Grafted Polyaniline@Graphene Oxide (PANI-GO) Nanocomposite for Electrochemical Sensor. Polymers, 2021, 13, 2562.	2.0	19
231	Citrate-modified Mg–Al layered double hydroxides for efficient removal of lead from water. Environmental Chemistry Letters, 2018, 16, 561-567.	8.3	18
232	Fabrication of Reproducible and Selective Ammonia Vapor Sensor-Pellet of Polypyrrole/Cerium Oxide Nanocomposite for Prompt Detection at Room Temperature. Polymers, 2021, 13, 1829.	2.0	18
233	Cobalt phosphide nanowall array as an efficient 3D catalyst electrode for methanol electro-oxidation. Nanotechnology, 2016, 27, 44LT02.	1.3	17
234	The conducting polymer electrolyte based on polypyrrole-polyvinyl alcohol and its application in low-cost quasi-solid-state dye-sensitized solar cells. Journal of Solid State Electrochemistry, 2018, 22, 3785-3797.	1.2	17

#	Article	IF	CITATIONS
235	A new way of synthesis nanohybrid cation-exchanger applicable for membrane electrode. Polymer Composites, 2014, 35, 1436-1443.	2.3	16
236	Structured Polyaniline: An Efficient and Durable Electrocatalyst for the Nitrogen Reduction Reaction in Acidic Media. ChemElectroChem, 2019, 6, 2215-2218.	1.7	16
237	Replacing oxygen evolution with sodium sulfide electro-oxidation toward energy-efficient electrochemical hydrogen production: Using cobalt phosphide nanoarray as a bifunctional catalyst. International Journal of Hydrogen Energy, 2017, 42, 26289-26295.	3.8	15
238	Bacillus-Mediated Silver Nanoparticle Synthesis and Its Antagonistic Activity against Bacterial and Fungal Pathogens. Antibiotics, 2021, 10, 1334.	1.5	15
239	Donor moieties with D–π–a framing modulated electronic and nonlinear optical properties for non-fullerene-based chromophores. RSC Advances, 2022, 12, 4209-4223.	1.7	15
240	Effect of Organic Additives on the Phase Separation Phenomenon of Amphiphilic Drug Solutions. Journal of Surfactants and Detergents, 2012, 15, 765-775.	1.0	14
241	Room temperature preparation, electrical conductivity, and thermal behavior evaluation on silver nanoparticle embedded polyaniline tungstophosphate nanocomposite. Polymer Composites, 2016, 37, 2460-2466.	2.3	13
242	Use of Fourier transform near-infrared spectroscopy combined with a relevance vector machine to discriminate Tetrastigma hemsleyanum (Sanyeqing) from other related species. Analytical Methods, 2017, 9, 4023-4027.	1.3	13
243	Oxidationâ€etching induced morphology regulation of Cu catalysts for highâ€performance electrochemical <scp>N₂</scp> reduction. EcoMat, 2020, 2, e12026.	6.8	13
244	Graphene Oxide Based Metallic Nanoparticles and their Some Biological and Environmental Application. Current Drug Metabolism, 2018, 18, 1020-1029.	0.7	13
245	A study on optical limiting properties of Eosin-Y and Eriochrome Black-T dye-doped poly (vinyl) Tj ETQq1 1 0.7843 326-333.	14 rgBT /(0.9	Overlock 10 12
246	BaSrLaFe12O19 nanorods: optical and magnetic properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 8022-8032.	1.1	12
247	Sensitive and selective fluorescence detection of aqueous uranyl ions using water-soluble CdTe quantum dots. Journal of Radioanalytical and Nuclear Chemistry, 2018, 316, 1011-1019.	0.7	11
248	Micellization behavior of bile salt with pluronic (Fâ€127) and synthesis of silver nanoparticles in a mixed system. Journal of Physical Organic Chemistry, 2019, 32, e3964.	0.9	11
249	Oneâ€Step Preparation of Cobaltâ€Nanoparticleâ€Embedded Carbon for Effective Water Oxidation Electrocatalysis. ChemElectroChem, 2019, 6, 1996-1999.	1.7	11
250	A Brief Study on Optical and Mechanical Properties of an Organic Material: Urea Glutaric Acid (2/1)—A Third Order Nonlinear Optical Single Crystal. Crystals, 2021, 11, 1239.	1.0	11
251	Thermodynamics, Kinetics, and Adsorption Properties of Biomolecules onto Carbon-Based Materials Obtained from Food Wastes. BioNanoScience, 2019, 9, 672-682.	1.5	10
252	Aggregation behavior of cetyldimethylethylammonium bromide under the influence of bovine serum albumin in aqueous/electrolyte solutions at various temperatures and compositions: conductivity and molecular dynamics study. RSC Advances, 2019, 9, 6556-6567.	1.7	10

#	Article	IF	CITATIONS
253	Synthesis of Silver Embedded Poly(o-Anisidine) Molybdophosphate Nano Hybrid Cation-Exchanger Applicable for Membrane Electrode. PLoS ONE, 2014, 9, e96897.	1.1	9
254	Preparation, Electrical Conductivity, and Thermal Studies on Silver Doped Polyaniline Phosphotungstate Nanocomposite. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2014, 44, 1526-1530.	0.6	9
255	Toward designing efficient rice-shaped polyaniline@bismuth oxide nanocomposites for sensor application. Journal of Sol-Gel Science and Technology, 2015, 76, 519-528.	1.1	9
256	Proteomic-genomic adjustments and their confluence for elucidation of pathways and networks during liver fibrosis. International Journal of Biological Macromolecules, 2018, 111, 379-392.	3.6	9
257	Equilibrium, Kinetics and Thermodynamics of Bovine Serum Albumin from Carbon Based Materials Obtained from Food Wastes. BioNanoScience, 2019, 9, 692-701.	1.5	9
258	Preparation and characterization of lignin/nano graphene oxide/styrene butadiene rubber composite for automobile tyre application. International Journal of Biological Macromolecules, 2022, 206, 363-370.	3.6	9
259	Physicoâ€Chemical Investigations of Mixed Micelles of Cationic Gemini and Conventional Surfactants: a Conductometric Study. Journal of Surfactants and Detergents, 2013, 16, 77-84.	1.0	8
260	The Kinetic Parameters of Adsorption of Enzymes Using Carbon-Based Materials Obtained from Different Food Wastes. BioNanoScience, 2019, 9, 749-757.	1.5	8
261	Single microbead-based fluorescence "turn on―detection of biothiols by flow cytometry. Talanta, 2019, 195, 197-203.	2.9	8
262	Preparation and Properties of Novel Quaternized Metal–Polymer Matrix Nanocomposites. Polymer-Plastics Technology and Engineering, 2015, 54, 1615-1624.	1.9	7
263	The effect of Î ³ -ray-irradiated conducting polymer electrolyte and its application of dye-sensitized solar cells to building window glass system. Journal of Solid State Electrochemistry, 2020, 24, 251-261.	1.2	7
264	Development of Cd (II) Ion Probe Based on Novel Polyaniline-Multiwalled Carbon Nanotube-3-aminopropyltriethoxylsilane Composite. Membranes, 2021, 11, 853.	1.4	7
265	Isolation and Characterization of New Cellulosic Microfibers from Pandan Duri (<i>Pandanus) Tj ETQq1 1 0.7843</i>	14.rgBT /C 1.7	Overlock 10 T
266	Toward design and measurement of electrical conductivity and thermal properties of silver nanoparticle embedded poly(<i>o</i> â€anisidine) molybdophosphate nanocomposite and its application as microbiosensor. Polymer Composites, 2017, 38, E237.	2.3	6
267	Efficient Synthesis and Characterization of Polyaniline@Aluminium–Succinate Metal-Organic Frameworks Nanocomposite and Its Application for Zn(II) Ion Sensing. Polymers, 2021, 13, 3383.	2.0	6
268	Effect of anionic surfactant sodium dodecyl sulfate on the reaction of hexacyanoferrate(III) oxidation of levothyroxine in aqueous medium: a kinetic and mechanistic approach. Research on Chemical Intermediates, 2013, 39, 2379-2389.	1.3	5
269	Aggregation and Phase Separation Phenomenon of Amitriptyline Hydrochloride Under the Influence of Pharmaceutical Excipients. Journal of Surfactants and Detergents, 2014, 17, 37-48.	1.0	5
270	Micellization of Amphiphilic Drug with Pharmaceutical Excipients in Aqueous Electrolytic Solution: Composition, Interaction, and Stability of the Aggregates. Journal of Dispersion Science and Technology, 2014, 35, 1588-1598.	1.3	5

#	Article	IF	CITATIONS
271	Influence of additives (inorganic/organic) on the clouding behavior of amphiphilic drug solutions: Some thermodynamic studies. Journal of Saudi Chemical Society, 2015, 19, 292-300.	2.4	5
272	Graphene/iridium(III) dimer complex composite modified glassy carbon electrode as selective electrochemical sensor for determination of hydroquinone in real-life water samples. International Journal of Environmental Analytical Chemistry, 2022, 102, 2607-2624.	1.8	5
273	Synthesis, Characterization and Bio-Potential Activities of Co(II) and Ni(II) Complexes with O and N Donor Mixed Ligands. Crystals, 2022, 12, 326.	1.0	5
274	Effect of Process Parameters on the Fabrication of Hybrid Natural Fiber Composites Fabricated via Compression Moulding Process. Journal of Natural Fibers, 2022, 19, 14803-14812.	1.7	5
275	Analysis of Mixed Micellar Behavior of Promazine Hydrochloride with Surfactants in Aqueous Medium at Different Temperatures and Compositions. Zeitschrift Fur Physikalische Chemie, 2013, 227, 1671-1686.	1.4	4
276	Mechanistic Investigation of Osmium(VIII) Catalyzed Oxidation of Glutamic Acid With Sodium Salt of N-Chloro 4-Methylbenzenesulfonamide in Aqueous Media: A Practical Approach. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 10-18.	0.6	4
277	Transport and surface charge density of univalent ion of polyvinyl chloride-based barium tungstate ion-exchange composite membrane for industrial separation of waste water. Journal of Industrial Textiles, 2019, 49, 584-596.	1.1	4
278	A New Class of Polyethylene Glycol-Grafted Graphene Carbon Nanotube Composite as a Selective Adsorbent for Au(III). Waste and Biomass Valorization, 2021, 12, 937-946.	1.8	4
279	Effect of low levels of hydrotropes on micellization of phenothiazine drug. Korean Journal of Chemical Engineering, 2021, 38, 386-399.	1.2	4
280	Study of the base-catalysed oxidation of the anti-bacterial and anti-protozoal agent metronidazole by permanganate ion in alkaline medium. Research on Chemical Intermediates, 2014, 40, 1703-1714.	1.3	3
281	Spectral and Mechanistic Investigation of Oxidation of Rizatriptan by Silver Third Periodate Complex in Aqueous Alkaline Medium. Russian Journal of Physical Chemistry B, 2018, 12, 412-421.	0.2	3
282	Hybrid poly(ether-arylidene-ether-sulphone)s derivatives for divalent cobalt ion detection. SN Applied Sciences, 2020, 2, 1.	1.5	3
283	Synthesis of <i>N</i> -Methylspiropyrrolidine Hybrids for Their Structural Characterization, Biological and Molecular Docking Studies. Polycyclic Aromatic Compounds, 2023, 43, 2430-2443.	1.4	3
284	Sol-Gel Synthesis and Characterization of Highly Selective Poly(N-methyl pyrrole) Stannous(II)Tungstate Nano Composite for Mercury (Hg(II)) Detection. Crystals, 2022, 12, 371.	1.0	3
285	A Mechanistic Approach to the Influence of Surfactants on the Oxidation of Ethyl Mercaptan and its Dimer Ethyl Mercaptan Disulfide by Hexacyanoferrate(III) Ions in Aqueous Medium. Tenside, Surfactants, Detergents, 2016, 53, 87-93.	0.5	2
286	Synthesis and characterization of binaphthalene-2,2′-diamine-functionalized gold nanoparticles. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	2
287	Titanium-based metal-organic frameworks for photocatalytic applications. , 2021, , 37-63.		2
288	Comparative Green and Conventional Synthesis of 2-Hydroxy-1-Naphthaldehyde Based Barbiturates and Their DFT Study. Polycyclic Aromatic Compounds, 0, , 1-17.	1.4	2

#	Article	IF	CITATIONS
289	Deamination and decarboxylation of L-thyroxine by Chloroamine-T (CAT) in acidic medium: A mechanistic and kineitc study. Russian Journal of Physical Chemistry B, 2016, 10, 922-928.	0.2	1
290	Conductometric Study of Complexation of Macrocyclic Compounds with Zinc(II) and Copper(II) Ions in Aqueous-Organic Solvent Mixtures. Russian Journal of Physical Chemistry A, 2020, 94, 2752-2759.	0.1	1