Hamid Reza Shahverdi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10616086/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach. Process Biochemistry, 2007, 42, 919-923.	3.7	604
2	Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: The effects of visible-light irradiation and the liquid mixing process. Materials Research Bulletin, 2009, 44, 1415-1421.	5.2	150
3	Cuprous Oxide as a Potential Low ost Holeâ€Transport Material for Stable Perovskite Solar Cells. ChemSusChem, 2016, 9, 302-313.	6.8	122
4	New Physical Deposition Approach for Low Cost Inorganic Hole Transport Layer in Normal Architecture of Durable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 21807-21818.	8.0	80
5	Semi-Biosynthesis of Magnetite-Gold Composite Nanoparticles Using an Ethanol Extract of <i>Eucalyptus camaldulensis</i> and Study of the Surface Chemistry. Journal of Nanomaterials, 2009, 2009, 1-5.	2.7	29
6	New Scalable Cold-Roll Pressing for Post-treatment of Perovskite Microstructure in Perovskite Solar Cells. Journal of Physical Chemistry C, 2016, 120, 2520-2528.	3.1	29
7	Characterization of Fe49Cr18Mo7B16C4Nb6 high-entropy hardfacing layers produced by gas tungsten arc welding (GTAW) process. Surface and Coatings Technology, 2018, 352, 360-369.	4.8	27
8	Separation of the defect-free Fe3O4-Au core/shell fraction from magnetite-gold composite nanoparticles by an acid wash treatment. Journal of Nanostructure in Chemistry, 2013, 3, 1.	9.1	26
9	Study on feasibility of producing an amorphous surface layer of Fe49Cr18Mo7B16C4Nb3 by pulsed Nd:YAG laser surface melting. Applied Surface Science, 2013, 264, 176-183.	6.1	24
10	First and third generations of advanced high-strength steels in a FeCrNiBSi system. Journal of Materials Processing Technology, 2016, 238, 383-394.	6.3	23
11	Effects of annealing on the tribological behavior of Zr60Cu10Al15Ni15 bulk metallic glass. Journal of Non-Crystalline Solids, 2019, 517, 127-136.	3.1	21
12	Microstructural evolution and mechanical properties of a novel FeCrNiBSi advanced high-strength steel: Slow, accelerated and fast casting cooling rates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 668, 188-200.	5.6	13
13	Abrasive Wear Behavior and Its Relation with the Macro-indentation Fracture Toughness of an Fe-Based Super-Hard Hardfacing Deposit. Tribology Letters, 2019, 67, 1.	2.6	13
14	Effects of Electromagnetic Frequency and SiC Nanoparticles on the Microstructure Refinement and Mechanical Properties of Al A357-1.5Âwt% SiC Nanocomposites. International Journal of Metalcasting, 2018, 12, 565-573.	1.9	10
15	Effect of Boron Addition on Microstructural Evolution and Room-Temperature Mechanical Properties of Novel Fe66â°x CrNiB x Si (xÂ=Â0, 0.25, 0.50 and 0.75 WtÂPct) Advanced High-Strength Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5423-5437.	2.2	9
16	Second-phase hardening and rule of mixture, microbands and dislocation hardening in Fe 67.4â´'x Cr 15.5 Ni 14.1 Si 3.0 B x (x = 0, 2) alloy systems. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 715, 214-225.	5.6	8
17	Optimization of mechanical properties using D-optimal factorial design of experiment: Electromagnetic stir casting process of A357â^SiC nanocomposite. Transactions of Nonferrous Metals Society of China, 2020, 30, 1183-1194.	4.2	8
18	A Combined Hot Dip Aluminizing/Laser Alloying Treatment to Produce Iron-Rich Aluminides on Alloy Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 3176-3184.	2.2	7

#	Article	IF	CITATIONS
19	Fatigue crack growth behavior of a type of novel advanced high-strength steel in a FeCrNiBSi alloy system: A comparison between heat-treated cast and hot-rolled specimens. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 673, 280-287.	5.6	7
20	Macro-indentation fracture mechanisms in a super-hard hardfacing Fe-based electrode. Engineering Failure Analysis, 2018, 92, 480-494.	4.0	7
21	Development of New Third-Generation Medium Manganese Advanced High-Strength Steels Elaborating Hot-Rolling and Intercritical Annealing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 4261-4274.	2.2	7
22	Characteristics of electrospark deposition of a nickel-based alloy on 410 stainless steel for purpose of facilitating dissimilar metal welding by laser. International Journal of Advanced Manufacturing Technology, 2016, 87, 2821-2828.	3.0	6
23	Analysis of tensile deformation behavior of AM2B® advanced high-strength steel using electron back-scattered diffraction technique. Materials Characterization, 2017, 130, 64-73.	4.4	6
24	Effects of a Novel Severe Plastic Deformation Approach on Microstructural and Mechanical Characteristics of a Medium Manganese Advanced High Strength Steel. Metals and Materials International, 2022, 28, 1232-1245.	3.4	6
25	The effect of electrospark nickel interlayer thickness on the characteristics of Niobium to 410 stainless steel dissimilar laser welding. Journal of Manufacturing Processes, 2017, 30, 51-62.	5.9	4
26	Plastic Deformation Promoted by <i>lˆ</i> -Ferrite-to-Austenite Transformation in the Heat-Treated Cold-Rolled Novel Advanced High-Strength Steel in FeCrNiBSi Alloy System. ISIJ International, 2017, 57, 1138-1140.	1.4	0
27	Enhancing mechanical properties of medium Mn advanced high-strength steel by inter-critical annealing: elimination of austenizing and quenching steps. Ironmaking and Steelmaking, 2020, 47, 1148-1160.	2.1	0