Changsheng Wu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/10614955/changsheng-wu-publications-by-year.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

51	4,887	36	53
papers	citations	h-index	g-index
53 ext. papers	6,091 ext. citations	15.5 avg, IF	6.02 L-index

#	Paper	IF	Citations
51	Implantable, wireless, self-fixing thermal sensors for continuous measurements of microvascular blood flow in flaps and organ grafts <i>Biosensors and Bioelectronics</i> , 2022 , 206, 114145	11.8	2
50	A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. <i>Science</i> , 2022 , 376, 1006-1012	33.3	17
49	Differential cardiopulmonary monitoring system for artifact-canceled physiological tracking of athletes, workers, and COVID-19 patients. <i>Science Advances</i> , 2021 , 7,	14.3	11
48	Bitter Flavored, Soft Composites for Wearables Designed to Reduce Risks of Choking in Infants. <i>Advanced Materials</i> , 2021 , 33, e2103857	24	4
47	Functionalized wood with tunable tribopolarity for efficient triboelectric nanogenerators. <i>Matter</i> , 2021 , 4, 3049-3066	12.7	6
46	Sub-nanoliter metabolomics via mass spectrometry to characterize volume-limited samples. <i>Nature Communications</i> , 2020 , 11, 5625	17.4	22
45	Large-Area Triboelectric Nanogenerator Mass Spectrometry: Expanded Coverage, Double-Bond Pinpointing, and Supercharging. <i>Journal of the American Society for Mass Spectrometry</i> , 2020 , 31, 727-73	3 4 ·5	4
44	A wireless, skin-interfaced biosensor for cerebral hemodynamic monitoring in pediatric care. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 31674-31684	4 ^{11.5}	21
43	Sustainable and Biodegradable Wood Sponge Piezoelectric Nanogenerator for Sensing and Energy Harvesting Applications. <i>ACS Nano</i> , 2020 , 14, 14665-14674	16.7	49
42	Self-Powered Iontophoretic Transdermal Drug Delivery System Driven and Regulated by Biomechanical Motions. <i>Advanced Functional Materials</i> , 2020 , 30, 1907378	15.6	63
41	Contact-Electrification between Two Identical Materials: Curvature Effect. ACS Nano, 2019, 13, 2034-20	416.7	55
40	Ferroelectricity-Enhanced Piezo-Phototronic Effect in 2D V-Doped ZnO Nanosheets. <i>Advanced Science</i> , 2019 , 6, 1900314	13.6	20
39	TriboPump: A Low-Cost, Hand-Powered Water Disinfection System. <i>Advanced Energy Materials</i> , 2019 , 9, 1901320	21.8	52
38	Electrohydrodynamic Jet Printing Driven by a Triboelectric Nanogenerator. <i>Advanced Functional Materials</i> , 2019 , 29, 1901102	15.6	39
37	Rational Structure Optimized Hybrid Nanogenerator for Highly Efficient Water Wave Energy Harvesting. <i>Advanced Energy Materials</i> , 2019 , 9, 1802892	21.8	55
36	Signal Output of Triboelectric Nanogenerator at Oil-Water-Solid Multiphase Interfaces and its Application for Dual-Signal Chemical Sensing. <i>Advanced Materials</i> , 2019 , 31, e1902793	24	64
35	Sunlight-Triggerable Transient Energy Harvester and Sensors Based on Triboelectric Nanogenerator Using Acid-Sensitive Poly(phthalaldehyde). <i>Advanced Electronic Materials</i> , 2019 , 5, 1900	728	10

(2017-2019)

34	Human Machine Interfacing Enabled by Triboelectric Nanogenerators and Tribotronics. <i>Advanced Materials Technologies</i> , 2019 , 4, 1800487	6.8	110
33	Triboelectric Nanogenerator: A Foundation of the Energy for the New Era. <i>Advanced Energy Materials</i> , 2019 , 9, 1802906	21.8	592
32	Concurrent Harvesting of Ambient Energy by Hybrid Nanogenerators for Wearable Self-Powered Systems and Active Remote Sensing. <i>ACS Applied Materials & Description of Systems and Active Remote Sensing.</i> ACS Applied Materials & Description of Systems and Active Remote Sensing.	9.5	55
31	Field Emission of Electrons Powered by a Triboelectric Nanogenerator. <i>Advanced Functional Materials</i> , 2018 , 28, 1800610	15.6	32
30	Keystroke dynamics enabled authentication and identification using triboelectric nanogenerator array. <i>Materials Today</i> , 2018 , 21, 216-222	21.8	122
29	Self-Powered Si/CdS Flexible Photodetector with Broadband Response from 325 to 1550 nm Based on Pyro-phototronic Effect: An Approach for Photosensing below Bandgap Energy. <i>Advanced Materials</i> , 2018 , 30, 1705893	24	95
28	MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit. <i>Nano Energy</i> , 2018 , 45, 266-272	17.1	236
27	Self-Powered Wind Sensor System for Detecting Wind Speed and Direction Based on a Triboelectric Nanogenerator. <i>ACS Nano</i> , 2018 , 12, 3954-3963	16.7	143
26	Self-powered wireless optical transmission of mechanical agitation signals. <i>Nano Energy</i> , 2018 , 47, 566-	-5 7-2 .1	45
25	Polymer nanogenerators: Opportunities and challenges for large-scale applications. <i>Journal of Applied Polymer Science</i> , 2018 , 135, 45674	2.9	53
24	A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. <i>Science Robotics</i> , 2018 , 3,	18.6	399
23	Enhanced performances of Si/CdS heterojunction near-infrared photodetector by the piezo-phototronic effect. <i>Nano Energy</i> , 2018 , 44, 311-318	17.1	36
22	Triboelectric microplasma powered by mechanical stimuli. <i>Nature Communications</i> , 2018 , 9, 3733	17.4	137
21	Pop-Up Conducting Large-Area Biographene Kirigami. ACS Nano, 2018, 12, 9714-9720	16.7	22
20	Self-Powered Multifunctional Motion Sensor Enabled by Magnetic-Regulated Triboelectric Nanogenerator. <i>ACS Nano</i> , 2018 , 12, 5726-5733	16.7	77
19	Bioprinting: an assessment based on manufacturing readiness levels. <i>Critical Reviews in Biotechnology</i> , 2017 , 37, 333-354	9.4	23
18	Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for flexible electronics. <i>Nature Communications</i> , 2017 , 8, 15310	17.4	121
17	Simultaneously Enhancing Light Emission and Suppressing Efficiency Droop in GaN Microwire-Based Ultraviolet Light-Emitting Diode by the Piezo-Phototronic Effect. <i>Nano Letters</i> , 2017 , 17, 3718-3724	11.5	44

16	Maximized Effective Energy Output of Contact-Separation-Triggered Triboelectric Nanogenerators as Limited by Air Breakdown. <i>Advanced Functional Materials</i> , 2017 , 27, 1700049	15.6	90
15	A Self-Powered Dynamic Displacement Monitoring System Based on Triboelectric Accelerometer. <i>Advanced Energy Materials</i> , 2017 , 7, 1700565	21.8	75
14	Silicon Nanowire/Polymer Hybrid Solar Cell-Supercapacitor: A Self-Charging Power Unit with a Total Efficiency of 10.5. <i>Nano Letters</i> , 2017 , 17, 4240-4247	11.5	106
13	A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy. <i>Nano Energy</i> , 2017 , 32, 287-293	17.1	124
12	A Highly Stretchable Fiber-Based Triboelectric Nanogenerator for Self-Powered Wearable Electronics. <i>Advanced Functional Materials</i> , 2017 , 27, 1604378	15.6	230
11	Achieving ultrahigh triboelectric charge density for efficient energy harvesting. <i>Nature Communications</i> , 2017 , 8, 88	17.4	350
10	Largely Improved Near-Infrared Silicon-Photosensing by the Piezo-Phototronic Effect. <i>ACS Nano</i> , 2017 , 11, 7118-7125	16.7	46
9	Quantitative Prediction of Paravalvular Leak in Transcatheter Aortic Valve Replacement Based on Tissue-Mimicking 3D Printing. <i>JACC: Cardiovascular Imaging</i> , 2017 , 10, 719-731	8.4	76
8	Piezo-Phototronic Effect on Selective Electron or Hole Transport through Depletion Region of Vis-NIR Broadband Photodiode. <i>Advanced Materials</i> , 2017 , 29, 1701412	24	62
7	Fully Packaged Blue Energy Harvester by Hybridizing a Rolling Triboelectric Nanogenerator and an Electromagnetic Generator. <i>ACS Nano</i> , 2016 , 10, 11369-11376	16.7	137
6	All-in-One Shape-Adaptive Self-Charging Power Package for Wearable Electronics. <i>ACS Nano</i> , 2016 , 10, 10580-10588	16.7	230
5	Dual-material 3D printed metamaterials with tunable mechanical properties for patient-specific tissue-mimicking phantoms. <i>Additive Manufacturing</i> , 2016 , 12, 31-37	6.1	46
4	Self-Powered Electrochemical Synthesis of Polypyrrole from the Pulsed Output of a Triboelectric Nanogenerator as a Sustainable Energy System. <i>Advanced Functional Materials</i> , 2016 , 26, 3542-3548	15.6	75
3	Paper-Based Triboelectric Nanogenerators Made of Stretchable Interlocking Kirigami Patterns. <i>ACS Nano</i> , 2016 , 10, 4652-9	16.7	160
2	Electric Eel-Skin-Inspired Mechanically Durable and Super-Stretchable Nanogenerator for Deformable Power Source and Fully Autonomous Conformable Electronic-Skin Applications. <i>Advanced Materials</i> , 2016 , 28, 10024-10032	24	212
1	A facile method for integrating direct-write devices into three-dimensional printed parts. <i>Smart Materials and Structures</i> , 2015 , 24, 065008	3.4	22