
Sang Taek Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1061485/publications.pdf Version: 2024-02-01

SANC TAER LUNC

#	Article	IF	CITATIONS
1	Targeting TCTP sensitizes tumor to T cell-mediated therapy by reversing immune-refractory phenotypes. Nature Communications, 2022, 13, 2127.	5.8	7
2	Recent Achievements and Challenges in Prolonging the Serum Half-Lives of Therapeutic IgG Antibodies Through Fc Engineering. BioDrugs, 2021, 35, 147-157.	2.2	24
3	Improved Yield of Recombinant Protein via Flagella Regulator Deletion in Escherichia coli. Frontiers in Microbiology, 2021, 12, 655072.	1.5	4
4	A human antibody against human endothelin receptor type A that exhibits antitumor potency. Experimental and Molecular Medicine, 2021, 53, 1437-1448.	3.2	12
5	The role of oxytocin, vasopressin, and their receptors at nociceptors in peripheral pain modulation. Frontiers in Neuroendocrinology, 2021, 63, 100942.	2.5	9
6	Structural Study on the Impact of S239D/I332E Mutations in the Binding of Fc and FcÎ ³ RIIIa. Biotechnology and Bioprocess Engineering, 2021, 26, 985-992.	1.4	3
7	Computerâ€based engineering of thermostabilized antibody fragments. AICHE Journal, 2020, 66, e16864.	1.8	12
8	Assessment of Computational Modeling of Fc-Fc Receptor Binding Through Protein-protein Docking Tool. Biotechnology and Bioprocess Engineering, 2020, 25, 734-741.	1.4	11
9	Antigen Design for Successful Isolation of Highly Challenging Therapeutic Anti-GPCR Antibodies. International Journal of Molecular Sciences, 2020, 21, 8240.	1.8	9
10	Engineered human FcγRIIa fusion: A novel strategy to extend serum halfâ€ i fe of therapeutic proteins. Biotechnology and Bioengineering, 2020, 117, 2351-2361.	1.7	2
11	Discovery of Novel Pseudomonas putida Flavin-Binding Fluorescent Protein Variants with Significantly Improved Quantum Yield. Journal of Agricultural and Food Chemistry, 2020, 68, 5873-5879.	2.4	11
12	Reprogramming the Constant Region of Immunoglobulin G Subclasses for Enhanced Therapeutic Potency against Cancer. Biomolecules, 2020, 10, 382.	1.8	8
13	Optimal combination of beneficial mutations for improved ADCC effector function of aglycosylated antibodies. Molecular Immunology, 2019, 114, 62-71.	1.0	5
14	Construction of an immunotoxin via site-specific conjugation of anti-Her2 lgG and engineered Pseudomonas exotoxin A. Journal of Biological Engineering, 2019, 13, 56.	2.0	12
15	Engineered <i>Arabidopsis</i> Blue Light Receptor LOV Domain Variants with Improved Quantum Yield, Brightness, and Thermostability. Journal of Agricultural and Food Chemistry, 2019, 67, 12037-12043.	2.4	12
16	lsolation of Single Chain Antibodies Specific to Lysophosphatidic Acid Receptor 1 (LPA 1) from a M13 Phage Display Library Using Purified LPA 1 Stabilized in Nanodiscs. Bulletin of the Korean Chemical Society, 2019, 40, 680-685.	1.0	0
17	Boosting therapeutic potency of antibodies by taming Fc domain functions. Experimental and Molecular Medicine, 2019, 51, 1-9.	3.2	77
18	Detection and purification of backbone-cyclized proteins using a bacterially expressed anti-myc-tag single chain antibody. Analytical Biochemistry, 2017, 532, 38-44.	1.1	0

Sang Taek Jung

#	Article	IF	CITATIONS
19	Determination of the endothelin-1 recognition sites of endothelin receptor type A by the directed-degeneration method. Scientific Reports, 2017, 7, 7577.	1.6	3
20	The Highly Evolvable Antibody Fc Domain. Trends in Biotechnology, 2016, 34, 895-908.	4.9	39
21	Engineering therapeutic antibodies targeting G-protein–coupled receptors. Experimental and Molecular Medicine, 2016, 48, e207-e207.	3.2	82
22	Structural consequences of aglycosylated IgG Fc variants evolved for FcγRI binding. Molecular Immunology, 2015, 67, 350-356.	1.0	15
23	Engineering antibodies for dual specificity and enhanced potency. Biotechnology and Bioprocess Engineering, 2015, 20, 201-210.	1.4	4
24	Engineering an aglycosylated Fc variant for enhanced FcγRI engagement and pH-dependent human FcRn binding. Biotechnology and Bioprocess Engineering, 2014, 19, 780-789.	1.4	11
25	Aglycosylated full-length IgG antibodies: steps toward next-generation immunotherapeutics. Current Opinion in Biotechnology, 2014, 30, 128-139.	3.3	50
26	Tailoring immunoglobulin Fc for highly potent and serum-stable therapeutic antibodies. Biotechnology and Bioprocess Engineering, 2013, 18, 625-636.	1.4	11
27	Effective Phagocytosis of Low Her2 Tumor Cell Lines with Engineered, Aglycosylated IgG Displaying High Fcl ³ Rlla Affinity and Selectivity. ACS Chemical Biology, 2013, 8, 368-375.	1.6	61
28	Recent development of highly sensitive protease assay methods: Signal amplification through enzyme cascades. Biotechnology and Bioprocess Engineering, 2012, 17, 1113-1119.	1.4	19
29	Bypassing glycosylation: engineering aglycosylated full-length IgG antibodies for human therapy. Current Opinion in Biotechnology, 2011, 22, 858-867.	3.3	88
30	Efficient expression and purification of human aglycosylated FcÎ ³ receptors in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2010, 107, 21-30.	1.7	15
31	Aglycosylated IgG variants expressed in bacteria that selectively bind FcγRI potentiate tumor cell killing by monocyte-dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 604-609.	3.3	146
32	Binding and enrichment of <i>Escherichia coli</i> spheroplasts expressing inner membrane tethered scFv antibodies on surface immobilized antigens. Biotechnology and Bioengineering, 2007, 98, 39-47.	1.7	34