Vinod Hegde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10614804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimising the Eu2O3 concentration and tuning the photoluminescence attributes of Eu2O3 doped borate glasses by Co–doping with silver nanoparticles. Journal of Non-Crystalline Solids, 2022, 576, 121250.	3.1	12
2	Photoluminescence, nonlinear optical and gamma radiation shielding properties of high concentration of Eu2O3 doped heavy metal borate glasses. Optik, 2022, 251, 168433.	2.9	14
3	Third-order nonlinear optical properties of Sm2O3 activated cadmium alkali borate glasses. Optical Materials, 2022, 127, 112313.	3.6	5
4	Photoluminescence properties of Dy3+ doped Sb2O3-Na2O-B2O3 glasses for laser applications. Materials Today: Proceedings, 2022, 62, 5563-5566.	1.8	2
5	Analysis of Optical and Near-Infrared Luminescence of Er3+ and Er3+/Yb3+ Co-Doped Heavy Metal Borate Glasses for Optical Amplifier Applications. Photonics, 2022, 9, 355.	2.0	9
6	Nonlinear optical, optical limiting and radiation shielding features of Eu3+ activated borate glasses. Optik, 2021, 232, 166563.	2.9	10
7	Effect of heavy metal oxides on photoluminescence and spectroscopic attributes of Eu3+ activated borate glasses. Optical Materials, 2021, 114, 110933.	3.6	22
8	Enhanced non-linear optical properties of Eu3+ activated glasses by embedding silver nanoparticles. Ceramics International, 2021, 47, 16801-16808.	4.8	27
9	Influence of gamma irradiation on photoluminescence and nonlinear optical properties of Eu3+ activated heavy metal borate glasses. Optical Materials, 2021, 116, 111102.	3.6	17
10	Photoluminescence and nonlinear optical investigations on Eu2O3 doped sodium bismuth borate glasses for solid state lighting and near-infrared optical limiting applications. Infrared Physics and Technology, 2021, 116, 103784.	2.9	12
11	Near-infrared nonlinear optical characteristics of silver nanoparticles embedded borate glasses activated with Sm3+ ions: Effect of heat treatment. Infrared Physics and Technology, 2021, 119, 103959.	2.9	10
12	Dy3+ doped SiO2–B2O3–Al2O3–NaF–ZnF2 glasses: An exploration of optical and gamma radiation shielding features. Current Applied Physics, 2020, 20, 1207-1216.	2.4	26
13	Effect of Eu3+ in tuning the ultrafast third-order optical nonlinearity in heavy metal borate glasses. Optical Materials, 2020, 108, 110051.	3.6	45
14	Compositional dependence of red photoluminescence of Eu3+ ions in lead and bismuth containing borate glasses. Solid State Sciences, 2020, 107, 106360.	3.2	27
15	Warm white light and colour tunable characteristics of Dy3+ co-doped with Eu3+ and Pr3+ zinc sodium bismuth borate glasses for solid state lighting applications. Materials Chemistry and Physics, 2019, 234, 369-377.	4.0	36
16	Physical, structural and optical properties of Sm3+ doped lithium zinc alumino borate glasses. Journal of Non-Crystalline Solids, 2019, 515, 116-124.	3.1	58
17	Effects of 7.5â€ ⁻ MeV electron beam irradiation on optical properties of Eu3+-doped zinc sodium bismuth borate glasses. Nuclear Instruments & Methods in Physics Research B, 2019, 446, 5-9.	1.4	2
18	Investigations on structural and radiation shielding properties of Er3+ doped zinc bismuth borate glasses. Materials Chemistry and Physics, 2019, 230, 267-276.	4.0	61

VINOD HEGDE

#	Article	IF	CITATIONS
19	Investigations on the physical, structural, optical and photoluminescence behavior of Er3+ ions in lithium zinc fluoroborate glass system. Infrared Physics and Technology, 2019, 98, 7-15.	2.9	29
20	Influence of 1.25†MeV gamma rays on optical and luminescent features of Er3+ doped zinc bismuth borate glasses. Results in Physics, 2019, 12, 1762-1769.	4.1	14
21	The effects of 150†kGy dose γ rays on Nd3+ doped lead fluoroborate glasses. Physica B: Condensed Matter, 2019, 556, 136-150.	2.7	3
22	Effects of high dose gamma irradiation on the optical properties of Eu3+ doped zinc sodium bismuth borate glasses for red LEDs. Journal of Luminescence, 2019, 207, 288-300.	3.1	21
23	Photoemission and thermoluminescence characteristics of Dy3+-doped zinc sodium bismuth borate glasses. Solid State Sciences, 2019, 89, 130-138.	3.2	28
24	Gamma irradiation on bismuth borate glasses doped by Eu3+ ions: Structural, optical and mechanical investigations. Optik, 2018, 160, 298-306.	2.9	14
25	The effect of 1.25â€ ⁻ MeV γ rays on Sm3+ doped lead fluoroborate glasses for reddish orange laser and radiation shielding applications. Journal of Luminescence, 2018, 199, 87-108.	3.1	37
26	The effects of <i>γ</i> rays and electron beam on Eu ³⁺ + Sm ³⁺ and Eu ³⁺ + Nd ³⁺ co-doped lead fluoroborate glasses. Materials Research Express, 2018, 5, 095204.	1.6	5
27	Photoluminescence and thermally stimulated luminescence properties of Pr3+-doped zinc sodium bismuth borate glasses. Optical Materials, 2018, 84, 268-277.	3.6	35
28	Spectroscopic investigation on europium doped heavy metal borate glasses for red luminescent application. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	18
29	Red light emission from europium doped zinc sodium bismuth borate glasses. Physica B: Condensed Matter, 2017, 527, 35-43.	2.7	45