David S Chapman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10614186/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Geothermal Record of Climate Change. Encyclopedia of Earth Sciences Series, 2021, , 541-547.	0.1	Ο
2	Isostasy, Thermal. Encyclopedia of Earth Sciences Series, 2021, , 847-854.	0.1	0
3	Geothermal Record of Climate Change. Encyclopedia of Earth Sciences Series, 2020, , 1-7.	0.1	0
4	Isostasy, Thermal. Encyclopedia of Earth Sciences Series, 2020, , 1-8.	0.1	0
5	Heat Flow, Heat Generation, and the Thermal State of the Lithosphere. Annual Review of Earth and Planetary Sciences, 2013, 41, 385-410.	11.0	109
6	Borehole temperatures and climate change: Ground temperature change in south India over the past two centuries. Journal of Geophysical Research, 2012, 117, .	3.3	15
7	Air, ground, and groundwater recharge temperatures in an alpine setting, Brighton Basin, Utah. Water Resources Research, 2012, 48, .	4.2	9
8	A Web-Based Resource for Investigating Environmental Change: The Emigrant Pass Observatory. Journal of Geoscience Education, 2012, 60, 241-248.	1.4	0
9	Isostasy, Thermal. Encyclopedia of Earth Sciences Series, 2011, , 662-668.	0.1	1
10	Repeat temperature measurements in boreholes from northwestern Utah link ground and air temperature changes at the decadal time scale. Journal of Geophysical Research, 2010, 115, .	3.3	15
11	Climate Change: Past, Present, and Future. Eos, 2010, 91, 325-326.	0.1	10
12	Comment on "Spherical harmonic analysis of Earth's conductive heat flow―by V. M. Hamza, R. R. Cardoso and C. F. Ponte Neto. International Journal of Earth Sciences, 2008, 97, 227-231.	1.8	1
13	Continental thermal isostasy: 1. Methods and sensitivity. Journal of Geophysical Research, 2007, 112, .	3.3	28
14	Continental thermal isostasy: 2. Application to North America. Journal of Geophysical Research, 2007, 112, .	3.3	28
15	Thermal conductivity anisotropy of metasedimentary and igneous rocks. Journal of Geophysical Research, 2007, 112, .	3.3	44
16	A Decade of Ground–Air Temperature Tracking at Emigrant Pass Observatory, Utah. Journal of Climate, 2006, 19, 3722-3731.	3.2	63
17	Snow effect on North American ground temperatures, 1950–2002. Journal of Geophysical Research, 2005, 110, .	3.3	48
18	Borehole temperatures and tree rings: Seasonality and estimates of extratropical Northern Hemispheric warming. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	18

DAVID S CHAPMAN

#	Article	IF	CITATIONS
19	Borehole Temperatures and Climate Change: A Global Perspective. , 2005, , 487-507.		1
20	Comment on "Ground vs. surface air temperature trends: Implications for borehole surface temperature reconstructions―by M. E. Mann and G. Schmidt. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	61
21	Snow and the ground temperature record of climate change. Journal of Geophysical Research, 2004, 109, .	3.3	86
22	Exhumation of the central Wasatch Mountains, Utah: 1. Patterns and timing of exhumation deduced from low-temperature thermochronology data. Journal of Geophysical Research, 2003, 108, .	3.3	57
23	Climate change in India inferred from geothermal observations. Journal of Geophysical Research, 2002, 107, ETG 5-1-ETG 5-16.	3.3	44
24	Reply to Comment by T.J. Osborn and K.R. Briffa on "Mid-latitude (30°-60°N) climatic warming inferred by combining borehole temperatures with surface air temperatures". Geophysical Research Letters, 2002, 29, 46-1-46-1.	4.0	2
25	Mid-latitude (30°-60° N) climatic warming inferred by combining borehole temperatures with surface air temperatures. Geophysical Research Letters, 2001, 28, 747-750.	4.0	126
26	An unequivocal case for high Nusselt number hydrothermal convection in sediment-buried igneous oceanic crust. Earth and Planetary Science Letters, 1997, 146, 137-150.	4.4	107
27	Observations concerning the vigor of hydrothermal circulation in young oceanic crust. Journal of Geophysical Research, 1996, 101, 2927-2942.	3.3	40
28	Problems with imaging cellular hydrothermal convection in oceanic crust. Geophysical Research Letters, 1996, 23, 3551-3554.	4.0	13
29	A geothermal climate change observatory: First year results from Emigrant Pass in northwest Utah. Journal of Geophysical Research, 1996, 101, 21877-21890.	3.3	88
30	Thermal analysis of the southern Powder River Basin, Wyoming. Geophysics, 1996, 61, 1689-1701.	2.6	11
31	Repeat temperature measurements in Borehole GCâ€1, northwestern Utah: Towards isolating a climateâ€change signal in borehole temperature profiles. Geophysical Research Letters, 1993, 20, 1891-1894.	4.0	35
32	A detailed study of heat flow at the Fifth Water Site, Utah, in the Basin and Range-Colorado Plateaus transition. Tectonophysics, 1990, 176, 291-314.	2.2	7
33	Heat-flow variations correlated with buried basement topography on the Juan de Fuca Ridge flank. Nature, 1989, 342, 533-537.	27.8	85
34	Heat Flow in the Utahâ€Wyoming Thrust Belt From Analysis of Bottomâ€Hole Temperature Data Measured in Oil and Gas Wells. Journal of Geophysical Research, 1988, 93, 13657-13672.	3.3	43
35	Crustal heterogeneities and the thermal structure of the continental crust. Geophysical Research Letters, 1987, 14, 314-317.	4.0	85
36	Thermal state of the lithosphere. Reviews of Geophysics, 1987, 25, 1255-1264.	23.0	25

DAVID S CHAPMAN

#	Article	IF	CITATIONS
37	Thermal regime at the Upper Stillwater dam site, Uinta mountains, Utah: Implications for terrain, microclimate and structural corrections in heat flow studies. Tectonophysics, 1986, 128, 1-20.	2.2	15
38	A thermo-mechanical model of continental lithosphere. Nature, 1985, 314, 520-523.	27.8	42
39	Heat flow anomalies and their interpretation. Journal of Geodynamics, 1985, 4, 3-37.	1.6	50
40	The influence of water table configuration on the near-surface thermal regime. Journal of Geodynamics, 1985, 4, 183-198.	1.6	11
41	Heat flow in the Uinta Basin determined from bottom hole temperature (BHT) data. Geophysics, 1984, 49, 453-466.	2.6	138
42	Heat flow in the north entral Colorado Plateau. Journal of Geophysical Research, 1982, 87, 2869-2884.	3.3	107
43	Convective Heat Transfer in Selected Geologic Situations. Ground Water, 1980, 18, 386-394.	1.3	21
44	Terrestrial heat flux. Nature, 1980, 287, 190-191.	27.8	0
45	Roll cell mantle convection under the Pacific plate. Nature, 1978, 274, 145-147.	27.8	5
46	Regional geotherms and lithospheric thickness. Geology, 1977, 5, 265.	4.4	196
47	Mantle heat flow. Earth and Planetary Science Letters, 1977, 34, 174-184.	4.4	132
48	Heat flow and heat production in Zambia: Evidence for lithospheric thinning in central Africa. Tectonophysics, 1977, 41, 79-100.	2.2	69
49	On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics, 1977, 38, 279-296.	2.2	955
50	Heat flow and incipient rifting in the Central African Plateau. Nature, 1975, 256, 28-30.	27.8	30
51	Global heat flow: A new look. Earth and Planetary Science Letters, 1975, 28, 23-32.	4.4	155
52	â€~Cold spot' in West Africa: anchoring the African plate. Nature, 1974, 250, 477-478.	27.8	64
53	Temperatures, Fluid Flow and Heat Transfer Mechanisms in the Uinta Basin. Geophysical Monograph Series, 0, , 29-33.	0.1	9