
Paul Ml Janssen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10612427/publications.pdf Version: 2024-02-01

DALLI MI LANSSEN

#	Article	IF	CITATIONS
1	Interplay of IKK/NF-κB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy. Journal of Clinical Investigation, 2007, 117, 889-901.	8.2	382
2	Small and large animal models in cardiac contraction research: Advantages and disadvantages. , 2014, 141, 235-249.		352
3	Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts. European Heart Journal, 2015, 36, 2390-2401.	2.2	347
4	Frequency- and Afterload-Dependent Cardiac Modulation In Vivo by Troponin I With Constitutively Active Protein Kinase A Phosphorylation Sites. Circulation Research, 2004, 94, 496-504.	4.5	142
5	Overexpression of FK506-Binding Protein FKBP12.6 in Cardiomyocytes Reduces Ryanodine Receptor–Mediated Ca ²⁺ Leak From the Sarcoplasmic Reticulum and Increases Contractility. Circulation Research, 2001, 88, 188-194.	4.5	137
6	In Vivo Genome Editing Restores Dystrophin Expression and Cardiac Function in Dystrophic Mice. Circulation Research, 2017, 121, 923-929.	4.5	123
7	Early Treatment With Lisinopril and Spironolactone Preserves Cardiac and Skeletal Muscle in Duchenne Muscular Dystrophy Mice. Circulation, 2011, 124, 582-588.	1.6	122
8	Atrial Glutathione Content, Calcium Current, and Contractility. Journal of Biological Chemistry, 2007, 282, 28063-28073.	3.4	103
9	A translational approach for limb vascular delivery of the micro-dystrophin gene without high volume or high pressure for treatment of Duchenne muscular dystrophy. Journal of Translational Medicine, 2007, 5, 45.	4.4	90
10	Hydroxyl Radical-Induced Acute Diastolic Dysfunction Is Due to Calcium Overload via Reverse-Mode Na + -Ca 2+ Exchange. Circulation Research, 2002, 90, 988-995.	4.5	88
11	Influence of Pyruvate on Contractile Performance and Ca ²⁺ Cycling in Isolated Failing Human Myocardium. Circulation, 2002, 105, 194-199.	1.6	85
12	Determinants of frequency-dependent contraction and relaxation of mammalian myocardium. Journal of Molecular and Cellular Cardiology, 2007, 43, 523-531.	1.9	85
13	Human sinoatrial node structure: 3D microanatomy of sinoatrial conduction pathways. Progress in Biophysics and Molecular Biology, 2016, 120, 164-178.	2.9	81
14	Levosimendan improves diastolic and systolic function in failing human myocardium. European Journal of Pharmacology, 2000, 404, 191-199.	3.5	76
15	Molecular Mapping of Sinoatrial Node HCN Channel Expression in the Human Heart. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 1219-1227.	4.8	72
16	Molecular Basis of Diastolic Dysfunction. Heart Failure Clinics, 2008, 4, 13-21.	2.1	68
17	Physiological Determinants of Contractile Force Generation and Calcium Handling in Mouse Myocardium. Journal of Molecular and Cellular Cardiology, 2002, 34, 1367-1376.	1.9	66
18	IKKα and alternative NF-κB regulate PGC-1β to promote oxidative muscle metabolism. Journal of Cell Biology, 2012, 196, 497-511.	5.2	63

PAUL ML JANSSEN

#	Article	IF	CITATIONS
19	Targeted Overexpression of Sarcolipin in the Mouse Heart Decreases Sarcoplasmic Reticulum Calcium Transport and Cardiac Contractility. Journal of Biological Chemistry, 2006, 281, 3972-3979.	3.4	61
20	Preservation of Contractile Characteristics of Human Myocardium in Multi-day Cell Culture. Journal of Molecular and Cellular Cardiology, 1999, 31, 1419-1427.	1.9	54
21	Integration of High-Resolution Optical Mapping and 3-Dimensional Micro-Computed Tomographic Imaging to Resolve the Structural Basis of Atrial Conduction in the Human Heart. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 1514-1517.	4.8	51
22	Human Atrial Fibrillation Drivers ResolvedÂWith Integrated Functional andÂStructural Imaging to Benefit ClinicalÂMapping. JACC: Clinical Electrophysiology, 2018, 4, 1501-1515.	3.2	51
23	Increased phosphorylation of tropomyosin, troponin I, and myosin light chain-2 after stretch in rabbit ventricular myocardium under physiological conditions. Journal of Molecular and Cellular Cardiology, 2010, 48, 1023-1028.	1.9	50
24	mdx Mice Manifest More Severe Muscle Dysfunction and Diaphragm Force Deficits than Do mdx Mice. American Journal of Pathology, 2011, 179, 2464-2474.	3.8	50
25	LAMP-2 deficient mice show depressed cardiac contractile function without significant changes in calcium handling. Basic Research in Cardiology, 2006, 101, 281-291.	5.9	49
26	The Need for Speed. Circulation Research, 2016, 119, 418-421.	4.5	46
27	AAV-mediated Overexpression of Human α7 Integrin Leads to Histological and Functional Improvement in Dystrophic Mice. Molecular Therapy, 2013, 21, 520-525.	8.2	39
28	Impaired neuronal sodium channels cause intranodal conduction failure and reentrant arrhythmias in human sinoatrial node. Nature Communications, 2020, 11, 512.	12.8	39
29	Effect of muscle length on cross-bridge kinetics in intact cardiac trabeculae at body temperature. Journal of General Physiology, 2013, 141, 133-139.	1.9	38
30	Tropomyosin Ser-283 pseudo-phosphorylation slows myofibril relaxation. Archives of Biochemistry and Biophysics, 2013, 535, 30-38.	3.0	37
31	Improvement of cardiac contractile function by peptide-based inhibition of NF-ήB in the utrophin/dystrophin-deficient murine model of muscular dystrophy. Journal of Translational Medicine, 2011, 9, 68.	4.4	36
32	Transient and sustained impacts of hydroxyl radicals on sarcoplasmic reticulum function: protective effects of nebivolol. European Journal of Pharmacology, 1999, 366, 223-232.	3.5	35
33	The Rates of Ca2+ Dissociation and Cross-bridge Detachment from Ventricular Myofibrils as Reported by a Fluorescent Cardiac Troponin C. Journal of Biological Chemistry, 2012, 287, 27930-27940.	3.4	35
34	Novel application of 3D contrast-enhanced CMR to define fibrotic structure of the human sinoatrial node in vivo. European Heart Journal Cardiovascular Imaging, 2017, 18, 862-869.	1.2	35
35	Impairment of Diastolic Function by Lack of Frequency-Dependent Myofilament Desensitizationin Rabbit Right Ventricular Hypertrophy. Circulation: Heart Failure, 2009, 2, 472-481.	3.9	34
36	Improved systolic and diastolic myocardial function with intracoronary pyruvate in patients with congestive heart failure. European Journal of Heart Failure, 2004, 6, 213-218.	7.1	32

PAUL ML JANSSEN

#	Article	IF	CITATIONS
37	Cardiac troponin I tyrosine 26 phosphorylation decreases myofilament Ca2+ sensitivity and accelerates deactivation. Journal of Molecular and Cellular Cardiology, 2014, 76, 257-264.	1.9	32
38	Claudin-5 levels are reduced in human end-stage cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2008, 45, 81-87.	1.9	28
39	Etiology-dependent impairment of relaxation kinetics in right ventricular end-stage failing human myocardium. Journal of Molecular and Cellular Cardiology, 2018, 121, 81-93.	1.9	28
40	Influence of metabolic dysfunction on cardiac mechanics in decompensated hypertrophy and heart failure. Journal of Molecular and Cellular Cardiology, 2016, 94, 162-175.	1.9	25
41	Potentiation of beta-adrenergic inotropic response by pyruvate in failing human myocardium. Cardiovascular Research, 2002, 53, 116-123.	3.8	23
42	Intracellular β-blockade: overexpression of Cαi2 depresses the β-adrenergic response in intact myocardium. Cardiovascular Research, 2002, 55, 300-308.	3.8	23
43	Fibroblast-Specific Proteotranscriptomes Reveal Distinct Fibrotic Signatures of Human Sinoatrial Node in Nonfailing and Failing Hearts. Circulation, 2021, 144, 126-143.	1.6	22
44	Cardiomyopathy in the dystrophin/utrophin-deficient mouse model of severe muscular dystrophy is characterized by dysregulation of matrix metalloproteinases. Neuromuscular Disorders, 2012, 22, 1006-1014.	0.6	21
45	Optical Mapping-Validated Machine Learning Improves Atrial Fibrillation Driver Detection by Multi-Electrode Mapping. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e008249.	4.8	21
46	Sustaining Cardiac Claudin-5 Levels Prevents Functional Hallmarks of Cardiomyopathy in a Muscular Dystrophy Mouse Model. Molecular Therapy, 2012, 20, 1378-1383.	8.2	19
47	The Angiotensin Converting Enzyme Inhibitor Lisinopril Improves Muscle Histopathology but not Contractile Function in a Mouse Model of Duchenne Muscular Dystrophy. Journal of Neuromuscular Diseases, 2015, 2, 257-268.	2.6	18
48	Similar Efficacy from Specific andÂNon-Specific Mineralocorticoid Receptor Antagonist Treatment of Muscular Dystrophy Mice. Journal of Neuromuscular Diseases, 2016, 3, 395-404.	2.6	18
49	Post-translational modifications of myofilament proteins involved in length-dependent prolongation of relaxation in rabbit right ventricular myocardium. Archives of Biochemistry and Biophysics, 2013, 535, 22-29.	3.0	17
50	Claudin-5 levels are reduced from multiple cell types in human failing hearts and are associated with mislocalization of ephrin-B1. Cardiovascular Pathology, 2015, 24, 160-167.	1.6	17
51	Mineralocorticoid Receptor Antagonists in Muscular Dystrophy Mice During Aging and Exercise. Journal of Neuromuscular Diseases, 2018, 5, 295-306.	2.6	15
52	Impact of β-Adrenoceptor Antagonists on Myofilament Calcium Sensitivity of Rabbit and Human Myocardium. Journal of Cardiovascular Pharmacology, 2000, 36, 126-131.	1.9	15
53	Designing proteins to combat disease: Cardiac troponin C as an example. Archives of Biochemistry and Biophysics, 2016, 601, 4-10.	3.0	14
54	Impact of etiology on force and kinetics of left ventricular end-stage failing human myocardium. Journal of Molecular and Cellular Cardiology, 2021, 156, 7-19.	1.9	14

PAUL ML JANSSEN

#	Article	IF	CITATIONS
55	Myocardial relaxation in human heart failure: Why sarcomere kinetics should be center-stage. Archives of Biochemistry and Biophysics, 2019, 661, 145-148.	3.0	13
56	Mineralocorticoid receptor antagonism by finerenone is sufficient to improve function in preclinical muscular dystrophy. ESC Heart Failure, 2020, 7, 3983-3995.	3.1	13
57	Effects of increased systolic Ca2+ and β-adrenergic stimulation on Ca2+ transient decline in NOS1 knockout cardiac myocytes. Nitric Oxide - Biology and Chemistry, 2012, 27, 242-247.	2.7	11
58	Insights into length-dependent regulation of cardiac cross-bridge cycling kinetics in human myocardium. Archives of Biochemistry and Biophysics, 2016, 601, 48-55.	3.0	10
59	Assessment of PKA and PKC inhibitors on force and kinetics of non-failing and failing human myocardium. Life Sciences, 2018, 215, 119-127.	4.3	9
60	Influence of pyruvate on economy of contraction in isolated rabbit myocardium. European Journal of Heart Failure, 2007, 9, 754-761.	7.1	5
61	Serum Antibodies to N-Glycolylneuraminic Acid Are Elevated in Duchenne Muscular Dystrophy and Correlate with Increased Disease Pathology in Cmahmdx Mice. American Journal of Pathology, 2021, 191, 1474-1486.	3.8	4
62	Increased cross-bridge recruitment contributes to transient increase in force generation beyond maximal capacity in human myocardium. Journal of Molecular and Cellular Cardiology, 2018, 114, 116-123.	1.9	3
63	Contraction–relaxation coupling is unaltered by exercise training and infarction in isolated canine myocardium. Journal of General Physiology, 2021, 153, .	1.9	3
64	In vitro studies of early cardiac remodeling impact on contraction and calcium handling. Frontiers in Bioscience - Scholar, 2011, S3, 1047-1057.	2.1	0
65	Response to Letter Regarding Article, "Early Treatment With Lisinopril and Spironolactone Preserves Cardiac and Skeletal Muscle in Duchenne Muscular Dystrophy Mice― Circulation, 2012, 125, .	1.6	0