Lydia Visser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10612381/publications.pdf

Version: 2024-02-01

83 papers	2,362 citations	27 h-index	223800 46 g-index
85	85	85	3476
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	CD4+ T cells in classical Hodgkin lymphoma express exhaustion associated transcription factors TOX and TOX2. Oncolmmunology, 2022, 11, 2033433.	4.6	9
2	Identification of the estrogen receptor beta as a possible new tamoxifen-sensitive target in diffuse large B-cell lymphoma. Blood Cancer Journal, 2022, 12, 36.	6.2	8
3	Anti-CD37 radioimmunotherapy with 177Lu-NNV003 synergizes with the PARP inhibitor olaparib in treatment of non-Hodgkin's lymphoma in vitro. PLoS ONE, 2022, 17, e0267543.	2.5	1
4	Validation of Novel Molecular Imaging Targets Identified by Functional Genomic mRNA Profiling to Detect Dysplasia in Barrett's Esophagus. Cancers, 2022, 14, 2462.	3.7	4
5	Interaction between ERAP Alleles and HLA Class I Types Support a Role of Antigen Presentation in Hodgkin Lymphoma Development. Cancers, 2021, 13, 414.	3.7	6
6	Soluble PDâ€L1 is a promising disease biomarker but does not reflect tissue expression in classic Hodgkin lymphoma. British Journal of Haematology, 2021, 193, 506-514.	2.5	9
7	Gene expression-based model predicts outcome in children with intermediate-risk classical Hodgkin lymphoma. Blood, 2021, , .	1.4	9
8	Computational study, synthesis and evaluation of active peptides derived from Parasporin-2 and spike protein from Alphacoronavirus against colon cancer cells. Bioscience Reports, 2021, 41, .	2.4	3
9	Genetic Modification Approaches for Parasporins Bacillus thuringiensis Proteins with Anticancer Activity. Molecules, 2021, 26, 7476.	3.8	1
10	Primary and acquired resistance mechanisms to immune checkpoint inhibition in Hodgkin lymphoma. Cancer Treatment Reviews, 2020, 82, 101931.	7.7	33
11	Rosetting T cells in Hodgkin lymphoma are activated by immunological synapse components HLA class II and CD58. Blood, 2020, 136, 2437-2441.	1.4	28
12	Enrichment of the tumour immune microenvironment in patients with desmoplastic colorectal liver metastasis. British Journal of Cancer, 2020, 123, 196-206.	6.4	35
13	B Cells as Prognostic Biomarker After Surgery for Colorectal Liver Metastases. Frontiers in Oncology, 2020, 10, 249.	2.8	7
14	WEE1 inhibition synergizes with CHOP chemotherapy and radiation therapy through induction of premature mitotic entry and DNA damage in diffuse large B-cell lymphoma. Therapeutic Advances in Hematology, 2020, 11, 204062071989837.	2.5	12
15	Interim thymus and activation regulated chemokine versus interim 18 Fâ€fluorodeoxyglucose positronâ€emission tomography in classical Hodgkin lymphoma response evaluation. British Journal of Haematology, 2020, 190, 40-44.	2.5	15
16	Microenvironment, Cross-Talk, and Immune Escape Mechanisms. Hematologic Malignancies, 2020, , 69-86.	0.2	1
17	WEE1 Inhibition Enhances Anti-Apoptotic Dependency as a Result of Premature Mitotic Entry and DNA Damage. Cancers, 2019, 11, 1743.	3.7	12
18	Tumour necrosis as assessed with 18F-FDG PET is a potential prognostic marker in diffuse large B cell lymphoma independent of MYC rearrangements. European Radiology, 2019, 29, 6018-6028.	4.5	6

#	Article	IF	Citations
19	Heterogeneous Pattern of Dependence on Anti-Apoptotic BCL-2 Family Proteins upon CHOP Treatment in Diffuse Large B-Cell Lymphoma. International Journal of Molecular Sciences, 2019, 20, 6036.	4.1	13
20	Plasma cells in classical Hodgkin lymphoma: a new player in the microenvironment?. British Journal of Haematology, 2019, 184, 119-120.	2.5	0
21	Argonaute 2 RNA Immunoprecipitation Reveals Distinct miRNA Targetomes of Primary Burkitt Lymphoma Tumors and Normal B Cells. American Journal of Pathology, 2018, 188, 1289-1299.	3.8	7
22	Combined PD-1 and JAK1/2 inhibition in refractory primary mediastinal B-cell lymphoma. Annals of Hematology, 2018, 97, 905-907.	1.8	3
23	Targeting the Microenvironment in Hodgkin Lymphoma: Opportunities and Challenges. Molecular Pathology Library, 2018, , 59-90.	0.1	0
24	Combined loss of <scp>HLA</scp> I and <scp>HLA II</scp> expression is more common in the nonâ€ <scp>GCB</scp> type of diffuse large B cell lymphoma. Histopathology, 2018, 72, 886-888.	2.9	4
25	MicroRNA High Throughput Loss-of-Function Screening Reveals an Oncogenic Role for miR-21-5p in Hodgkin Lymphoma. Cellular Physiology and Biochemistry, 2018, 49, 144-159.	1.6	20
26	The Microenvironment in Epstein–Barr Virus-Associated Malignancies. Pathogens, 2018, 7, 40.	2.8	40
27	Identification of relevant drugable targets in diffuse large B-cell lymphoma using a genome-wide unbiased CD20 guilt-by association approach. PLoS ONE, 2018, 13, e0193098.	2.5	20
28	miR-24-3p Is Overexpressed in Hodgkin Lymphoma and Protects Hodgkin and Reed-Sternberg Cells from Apoptosis. American Journal of Pathology, 2017, 187, 1343-1355.	3.8	46
29	HLA dependent immune escape mechanisms in B-cell lymphomas: Implications for immune checkpoint inhibitor therapy?. Oncolmmunology, 2017, 6, e1295202.	4.6	84
30	HLA expression and HLA type associations in relation to EBV status in Hispanic Hodgkin lymphoma patients. PLoS ONE, 2017, 12, e0174457.	2.5	7
31	Characterization of the Microenvironment of Nodular Lymphocyte Predominant Hodgkin Lymphoma. International Journal of Molecular Sciences, 2016, 17, 2127.	4.1	23
32	Biomarkers for evaluation of treatment response in classical Hodgkin lymphoma: comparison of <scp>sG</scp> alectinâ€1, <scp>sCD</scp> 163 and <scp>sCD</scp> 30 with TARC. British Journal of Haematology, 2016, 175, 868-875.	2.5	44
33	Long Noncoding RNA Expression Profiling in Normal B-Cell Subsets and Hodgkin Lymphoma Reveals Hodgkin and Reed-Sternberg Cell–Specific Long Noncoding RNAs. American Journal of Pathology, 2016, 186, 2462-2472.	3.8	36
34	Plasma vesicle miRNAs for therapy response monitoring in Hodgkin lymphoma patients. JCI Insight, 2016, 1, e89631.	5.0	121
35	Inhibition of the miR-155 target NIAM phenocopies the growth promoting effect of miR-155 in B-cell lymphoma. Oncotarget, 2016, 7, 2391-2400.	1.8	43
36	Paediatric nodal marginal zone Bâ€cell lymphadenopathy of the neck: a <i>Haemophilus influenzae</i> à€driven immune disorder?. Journal of Pathology, 2015, 236, 302-314.	4.5	23

#	Article	IF	Citations
37	CD57+ T-cells are a subpopulation of T-follicular helper cells in nodular lymphocyte predominant Hodgkin lymphoma. Experimental Hematology and Oncology, 2015, 4, 27.	5.0	13
38	Microenvironment, Crosstalk, and Immune Escape Mechanisms. Hematologic Malignancies, 2015, , 65-78.	0.2	0
39	Long noncoding RNAs as a novel component of the Myc transcriptional network. FASEB Journal, 2015, 29, 2338-2346.	0.5	67
40	Genetic Associations in Classical Hodgkin Lymphoma: A Systematic Review and Insights into Susceptibility Mechanisms. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 2737-2747.	2.5	52
41	The microenvironment in classical Hodgkin lymphoma: An actively shaped and essential tumor component. Seminars in Cancer Biology, 2014, 24, 15-22.	9.6	102
42	Insulin-Like Growth Factor 1 Receptor Is a Prognostic Factor in Classical Hodgkin Lymphoma. PLoS ONE, 2014, 9, e87474.	2.5	22
43	PML Nuclear Bodies and SATB1 Are Associated with HLA Class I Expression in EBV+ Hodgkin Lymphoma. PLoS ONE, 2013, 8, e72930.	2.5	5
44	ADAM17 up-regulation in renal transplant dysfunction and non-transplant-related renal fibrosis. Nephrology Dialysis Transplantation, 2012, 27, 2114-2122.	0.7	31
45	Plasma thymus and activation-regulated chemokine as an early response marker in classical Hodgkin's lymphoma. Haematologica, 2012, 97, 410-415.	3.5	56
46	Expression of the c-Met oncogene by tumor cells predicts a favorable outcome in classical Hodgkin's lymphoma. Haematologica, 2012, 97, 572-578.	3.5	29
47	Genome-Wide Association Study of Classical Hodgkin Lymphoma and Epstein–Barr Virus Status–Defined Subgroups. Journal of the National Cancer Institute, 2012, 104, 240-253.	6.3	141
48	HLA-A*02:07 Is a Protective Allele for EBV Negative and a Susceptibility Allele for EBV Positive Classical Hodgkin Lymphoma in China. PLoS ONE, 2012, 7, e31865.	2.5	25
49	HLA Associations in Classical Hodgkin Lymphoma: EBV Status Matters. PLoS ONE, 2012, 7, e39986.	2.5	52
50	Strong HLA Class I Expression Is Positively Correlated with the Number of PML Nuclear Bodies and Negatively with the Percentage of SATB1 Positive HRS Cells in EBV+ Classical Hodgkin Lymphoma (cHL). Blood, 2012, 120, 3633-3633.	1.4	0
51	Microenvironment, Cross-Talk, and Immune Escape Mechanisms. , 2011, , 49-61.		1
52	CCR4 Expression in Hodgkin Lymphoma. Blood, 2011, 118, 2626-2626.	1.4	0
53	EBV and HLA Associations In Classical Hodgkin Lymphoma Patients From Brazil. Blood, 2011, 118, 4858-4858.	1.4	0
54	Expression of CD1d and presence of invariant NKT cells in classical Hodgkin lymphoma. American Journal of Hematology, 2010, 85, 539-541.	4.1	24

#	Article	IF	CITATIONS
55	Heparin binding epidermal growth factor in renal ischaemia/reperfusion injury. Journal of Pathology, 2010, 221, 183-192.	4.5	19
56	Mid-Treatment Plasma Levels of Thymus Activated and Regulated Chemokine (TARC) Predict Treatment Outcome In Classical Hodgkin Lymphoma Patients. Blood, 2010, 116, 748-748.	1.4	4
57	Expression of HLA Class I and HLA Class II by Tumor Cells in Chinese Classical Hodgkin Lymphoma Patients. PLoS ONE, 2010, 5, e10865.	2.5	16
58	Expression of the c-Met Oncogene Correlates with Favorable Progression Free Survival In Classical Hodgkin Lymphoma. Blood, 2010, 116, 3880-3880.	1.4	0
59	HLA Class I and EBV Positive Classical Hodgkin Lymphoma In the Chinese Population. Blood, 2010, 116, 2688-2688.	1.4	O
60	Protective and Predisposing HLA Alleles In Dutch Classical Hodgkin Lymphoma Patients. Blood, 2010, 116, 749-749.	1.4	1
61	Expression of CD1c, CD1d and Presence of Invariant NKT Cells in Hodgkin Lymphoma Blood, 2009, 114, 3659-3659.	1.4	0
62	The HGF/c-Met Signaling Pathway in Hodgkin Lymphoma Blood, 2009, 114, 1551-1551.	1.4	1
63	The CD4+CD26â^ T-cell population in classical Hodgkin's lymphoma displays a distinctive regulatory T-cell profile. Laboratory Investigation, 2008, 88, 482-490.	3.7	62
64	Serum chemokine levels in Hodgkin lymphoma patients: highly increased levels of CCL17 and CCL22. British Journal of Haematology, 2008, 140, 527-536.	2.5	110
65	Proteomics analysis of Hodgkin lymphoma: identification of new players involved in the cross-talk between HRS cells and infiltrating lymphocytes. Blood, 2008, 111, 2339-2346.	1.4	114
66	HLA-A*02 is associated with a reduced risk and HLA-A*01 with an increased risk of developing EBV+ Hodgkin lymphoma. Blood, 2007, 110, 3310-3315.	1.4	131
67	Strongly enhanced IL-10 production using stable galectin-1 homodimers. Molecular Immunology, 2007, 44, 506-513.	2.2	93
68	miRNA Expression Profile of B-SLL Consistent with Normal Memory B Cells:BIC/miR–155 Specific Location in Proliferation Center Blood, 2007, 110, 2081-2081.	1.4	0
69	Cytokine gene expression profile distinguishes CD4+/CD57+ T cells of the nodular lymphocyte predominance type of Hodgkin's lymphoma from their tonsillar counterparts. Journal of Pathology, 2006, 208, 423-430.	4.5	41
70	Comparison of the ZAP70+ and ZAP70â^' B-CLL Kinome: Higher Kinase Activity in ZAP70+ B-CLL Cells Blood, 2006, 108, 2804-2804.	1.4	11
71	Dimeric galectin-1 induces IL-10 production in T-lymphocytes: an important tool in the regulation of the immune response. Journal of Pathology, 2004, 204, 511-518.	4.5	87
72	Prolonged survival of rat islet xenografts in mice after CD45RB monotherapy. Transplantation, 2004, 77, 386-391.	1.0	12

#	Article	IF	CITATIONS
73	Common and differential chemokine expression patterns in rs cells of NLP, EBV positive and negative classical hodgkin lymphomas. International Journal of Cancer, 2002, 99, 665-672.	5.1	66
74	Mechanisms of induction of renal allograft tolerance in CD45RB-treated mice. Kidney International, 1999, 55, 1303-1310.	5.2	17
7 5	CD45 (leucocyte common antigen) expression in T and B lymphocyte subsets. Leukemia and Lymphoma, 1996, 20, 217-222.	1.3	42
76	The Nature of the Lymphocytes in Hodgkin's Disease. , 1995, , 161-171.		3
77	Epstein-barr virus positivity in hodgkin's disease does not correlate with an hla a2-negative phenotype. Cancer, 1994, 73, 3059-3063.	4.1	23
78	Postnatal changes of CD45 expression in peripheral blood T and B cells. British Journal of Haematology, 1994, 87, 251-257.	2.5	13
79	Patterns of Leucocyte Common Antigen Expression in Peripheral Blood T Cell Populations. Cellular Immunology, 1993, 151, 218-224.	3.0	5
80	Neoplastic Changes Involving Follicles: Morphological, Immunophenotypic and Genetic Diversity of Lymphoproliferations Derived from Germinal Center and Mantle Zone. Immunological Reviews, 1992, 126, 163-178.	6.0	21
81	Induction of B-cell chronic lymphocytic leukaemia and hairy cell leukaemia like phenotypes by phorbol ester treatment of normal peripheral blood B-cells. British Journal of Haematology, 1990, 75, 359-365.	2.5	18
82	Evidence for a B-cell origin of the proliferating cells. Cancer Treatment and Research, 1989, 41, 5-27.	0.5	3
83	Morphologic, immunologic, enzymehistochemical and chromosomal analysis of a cell line derived from Hodgkin's disease. Evidence for a B-cell origin of sternberg-reed cells. Cancer, 1985, 55, 683-690.	4.1	95