
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10612381/publications.pdf Version: 2024-02-01



I VDIA VISSED

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Genome-Wide Association Study of Classical Hodgkin Lymphoma and Epstein–Barr Virus<br>Status–Defined Subgroups. Journal of the National Cancer Institute, 2012, 104, 240-253.                                                        | 6.3 | 141       |
| 2  | HLA-A*02 is associated with a reduced risk and HLA-A*01 with an increased risk of developing EBV+<br>Hodgkin lymphoma. Blood, 2007, 110, 3310-3315.                                                                                  | 1.4 | 131       |
| 3  | Plasma vesicle miRNAs for therapy response monitoring in Hodgkin lymphoma patients. JCl Insight, 2016,<br>1, e89631.                                                                                                                 | 5.0 | 121       |
| 4  | Proteomics analysis of Hodgkin lymphoma: identification of new players involved in the cross-talk between HRS cells and infiltrating lymphocytes. Blood, 2008, 111, 2339-2346.                                                       | 1.4 | 114       |
| 5  | Serum chemokine levels in Hodgkin lymphoma patients: highly increased levels of CCL17 and CCL22.<br>British Journal of Haematology, 2008, 140, 527-536.                                                                              | 2.5 | 110       |
| 6  | The microenvironment in classical Hodgkin lymphoma: An actively shaped and essential tumor component. Seminars in Cancer Biology, 2014, 24, 15-22.                                                                                   | 9.6 | 102       |
| 7  | Morphologic, immunologic, enzymehistochemical and chromosomal analysis of a cell line derived<br>from Hodgkin's disease. Evidence for a B-cell origin of sternberg-reed cells. Cancer, 1985, 55, 683-690.                            | 4.1 | 95        |
| 8  | Strongly enhanced IL-10 production using stable galectin-1 homodimers. Molecular Immunology, 2007, 44, 506-513.                                                                                                                      | 2.2 | 93        |
| 9  | Dimeric galectin-1 induces IL-10 production in T-lymphocytes: an important tool in the regulation of the immune response. Journal of Pathology, 2004, 204, 511-518.                                                                  | 4.5 | 87        |
| 10 | HLA dependent immune escape mechanisms in B-cell lymphomas: Implications for immune checkpoint inhibitor therapy?. Oncolmmunology, 2017, 6, e1295202.                                                                                | 4.6 | 84        |
| 11 | Long noncoding RNAs as a novel component of the Myc transcriptional network. FASEB Journal, 2015, 29, 2338-2346.                                                                                                                     | 0.5 | 67        |
| 12 | Common and differential chemokine expression patterns in rs cells of NLP, EBV positive and negative classical hodgkin lymphomas. International Journal of Cancer, 2002, 99, 665-672.                                                 | 5.1 | 66        |
| 13 | The CD4+CD26â^' T-cell population in classical Hodgkin's lymphoma displays a distinctive regulatory<br>T-cell profile. Laboratory Investigation, 2008, 88, 482-490.                                                                  | 3.7 | 62        |
| 14 | Plasma thymus and activation-regulated chemokine as an early response marker in classical Hodgkin's<br>lymphoma. Haematologica, 2012, 97, 410-415.                                                                                   | 3.5 | 56        |
| 15 | HLA Associations in Classical Hodgkin Lymphoma: EBV Status Matters. PLoS ONE, 2012, 7, e39986.                                                                                                                                       | 2.5 | 52        |
| 16 | Genetic Associations in Classical Hodgkin Lymphoma: A Systematic Review and Insights into<br>Susceptibility Mechanisms. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 2737-2747.                                          | 2.5 | 52        |
| 17 | miR-24-3p Is Overexpressed in Hodgkin Lymphoma and Protects Hodgkin and Reed-Sternberg Cells from<br>Apoptosis. American Journal of Pathology, 2017, 187, 1343-1355.                                                                 | 3.8 | 46        |
| 18 | Biomarkers for evaluation of treatment response in classical Hodgkin lymphoma: comparison of<br><scp>sG</scp> alectinâ€1, <scp>sCD</scp> 163 and <scp>sCD</scp> 30 with TARC. British Journal of<br>Haematology, 2016, 175, 868-875. | 2.5 | 44        |

LYDIA VISSER

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Inhibition of the miR-155 target NIAM phenocopies the growth promoting effect of miR-155 in B-cell<br>lymphoma. Oncotarget, 2016, 7, 2391-2400.                                                                        | 1.8 | 43        |
| 20 | CD45 (leucocyte common antigen) expression in T and B lymphocyte subsets. Leukemia and Lymphoma,<br>1996, 20, 217-222.                                                                                                 | 1.3 | 42        |
| 21 | Cytokine gene expression profile distinguishes CD4+/CD57+ T cells of the nodular lymphocyte<br>predominance type of Hodgkin's lymphoma from their tonsillar counterparts. Journal of Pathology,<br>2006, 208, 423-430. | 4.5 | 41        |
| 22 | The Microenvironment in Epstein–Barr Virus-Associated Malignancies. Pathogens, 2018, 7, 40.                                                                                                                            | 2.8 | 40        |
| 23 | Long Noncoding RNA Expression Profiling in Normal B-Cell Subsets and Hodgkin Lymphoma Reveals<br>Hodgkin and Reed-Sternberg Cell–Specific Long Noncoding RNAs. American Journal of Pathology, 2016,<br>186, 2462-2472. | 3.8 | 36        |
| 24 | Enrichment of the tumour immune microenvironment in patients with desmoplastic colorectal liver metastasis. British Journal of Cancer, 2020, 123, 196-206.                                                             | 6.4 | 35        |
| 25 | Primary and acquired resistance mechanisms to immune checkpoint inhibition in Hodgkin lymphoma.<br>Cancer Treatment Reviews, 2020, 82, 101931.                                                                         | 7.7 | 33        |
| 26 | ADAM17 up-regulation in renal transplant dysfunction and non-transplant-related renal fibrosis.<br>Nephrology Dialysis Transplantation, 2012, 27, 2114-2122.                                                           | 0.7 | 31        |
| 27 | Expression of the c-Met oncogene by tumor cells predicts a favorable outcome in classical Hodgkin's<br>lymphoma. Haematologica, 2012, 97, 572-578.                                                                     | 3.5 | 29        |
| 28 | Rosetting T cells in Hodgkin lymphoma are activated by immunological synapse components HLA class II<br>and CD58. Blood, 2020, 136, 2437-2441.                                                                         | 1.4 | 28        |
| 29 | HLA-A*02:07 Is a Protective Allele for EBV Negative and a Susceptibility Allele for EBV Positive Classical<br>Hodgkin Lymphoma in China. PLoS ONE, 2012, 7, e31865.                                                    | 2.5 | 25        |
| 30 | Expression of CD1d and presence of invariant NKT cells in classical Hodgkin lymphoma. American<br>Journal of Hematology, 2010, 85, 539-541.                                                                            | 4.1 | 24        |
| 31 | Epstein-barr virus positivity in hodgkin's disease does not correlate with an hla a2-negative phenotype.<br>Cancer, 1994, 73, 3059-3063.                                                                               | 4.1 | 23        |
| 32 | Paediatric nodal marginal zone Bâ€cell lymphadenopathy of the neck: a <i>Haemophilus<br/>influenzae</i> â€driven immune disorder?. Journal of Pathology, 2015, 236, 302-314.                                           | 4.5 | 23        |
| 33 | Characterization of the Microenvironment of Nodular Lymphocyte Predominant Hodgkin Lymphoma.<br>International Journal of Molecular Sciences, 2016, 17, 2127.                                                           | 4.1 | 23        |
| 34 | Insulin-Like Growth Factor 1 Receptor Is a Prognostic Factor in Classical Hodgkin Lymphoma. PLoS<br>ONE, 2014, 9, e87474.                                                                                              | 2.5 | 22        |
| 35 | Neoplastic Changes Involving Follicles: Morphological, Immunophenotypic and Genetic Diversity of<br>Lymphoproliferations Derived from Germinal Center and Mantle Zone. Immunological Reviews, 1992,<br>126, 163-178.   | 6.0 | 21        |
| 36 | MicroRNA High Throughput Loss-of-Function Screening Reveals an Oncogenic Role for miR-21-5p in<br>Hodgkin Lymphoma. Cellular Physiology and Biochemistry, 2018, 49, 144-159.                                           | 1.6 | 20        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Identification of relevant drugable targets in diffuse large B-cell lymphoma using a genome-wide<br>unbiased CD20 guilt-by association approach. PLoS ONE, 2018, 13, e0193098.                                                       | 2.5 | 20        |
| 38 | Heparin binding epidermal growth factor in renal ischaemia/reperfusion injury. Journal of Pathology, 2010, 221, 183-192.                                                                                                             | 4.5 | 19        |
| 39 | Induction of B-cell chronic lymphocytic leukaemia and hairy cell leukaemia like phenotypes by phorbol<br>ester treatment of normal peripheral blood B-cells. British Journal of Haematology, 1990, 75, 359-365.                      | 2.5 | 18        |
| 40 | Mechanisms of induction of renal allograft tolerance in CD45RB-treated mice. Kidney International, 1999, 55, 1303-1310.                                                                                                              | 5.2 | 17        |
| 41 | Expression of HLA Class I and HLA Class II by Tumor Cells in Chinese Classical Hodgkin Lymphoma<br>Patients. PLoS ONE, 2010, 5, e10865.                                                                                              | 2.5 | 16        |
| 42 | Interim thymus and activation regulated chemokine versus interim 18 Fâ€fluorodeoxyglucose<br>positronâ€emission tomography in classical Hodgkin lymphoma response evaluation. British Journal of<br>Haematology, 2020, 190, 40-44.   | 2.5 | 15        |
| 43 | Postnatal changes of CD45 expression in peripheral blood T and B cells. British Journal of Haematology, 1994, 87, 251-257.                                                                                                           | 2.5 | 13        |
| 44 | CD57+ T-cells are a subpopulation of T-follicular helper cells in nodular lymphocyte predominant<br>Hodgkin lymphoma. Experimental Hematology and Oncology, 2015, 4, 27.                                                             | 5.0 | 13        |
| 45 | Heterogeneous Pattern of Dependence on Anti-Apoptotic BCL-2 Family Proteins upon CHOP Treatment<br>in Diffuse Large B-Cell Lymphoma. International Journal of Molecular Sciences, 2019, 20, 6036.                                    | 4.1 | 13        |
| 46 | Prolonged survival of rat islet xenografts in mice after CD45RB monotherapy. Transplantation, 2004, 77, 386-391.                                                                                                                     | 1.0 | 12        |
| 47 | WEE1 Inhibition Enhances Anti-Apoptotic Dependency as a Result of Premature Mitotic Entry and DNA<br>Damage. Cancers, 2019, 11, 1743.                                                                                                | 3.7 | 12        |
| 48 | WEE1 inhibition synergizes with CHOP chemotherapy and radiation therapy through induction of premature mitotic entry and DNA damage in diffuse large B-cell lymphoma. Therapeutic Advances in Hematology, 2020, 11, 204062071989837. | 2.5 | 12        |
| 49 | Comparison of the ZAP70+ and ZAP70â^ B-CLL Kinome: Higher Kinase Activity in ZAP70+ B-CLL Cells<br>Blood, 2006, 108, 2804-2804.                                                                                                      | 1.4 | 11        |
| 50 | Soluble PD‣1 is a promising disease biomarker but does not reflect tissue expression in classic Hodgkin<br>lymphoma. British Journal of Haematology, 2021, 193, 506-514.                                                             | 2.5 | 9         |
| 51 | Gene expression-based model predicts outcome in children with intermediate-risk classical Hodgkin<br>lymphoma. Blood, 2021, , .                                                                                                      | 1.4 | 9         |
| 52 | CD4+ T cells in classical Hodgkin lymphoma express exhaustion associated transcription factors TOX and TOX2. OncoImmunology, 2022, 11, 2033433.                                                                                      | 4.6 | 9         |
| 53 | Identification of the estrogen receptor beta as a possible new tamoxifen-sensitive target in diffuse<br>large B-cell lymphoma. Blood Cancer Journal, 2022, 12, 36.                                                                   | 6.2 | 8         |
| 54 | Argonaute 2 RNA Immunoprecipitation Reveals Distinct miRNA Targetomes of Primary Burkitt Lymphoma<br>Tumors and Normal B Cells. American Journal of Pathology, 2018, 188, 1289-1299.                                                 | 3.8 | 7         |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | B Cells as Prognostic Biomarker After Surgery for Colorectal Liver Metastases. Frontiers in<br>Oncology, 2020, 10, 249.                                                                        | 2.8 | 7         |
| 56 | HLA expression and HLA type associations in relation to EBV status in Hispanic Hodgkin lymphoma patients. PLoS ONE, 2017, 12, e0174457.                                                        | 2.5 | 7         |
| 57 | Tumour necrosis as assessed with 18F-FDG PET is a potential prognostic marker in diffuse large B cell<br>lymphoma independent of MYC rearrangements. European Radiology, 2019, 29, 6018-6028.  | 4.5 | 6         |
| 58 | Interaction between ERAP Alleles and HLA Class I Types Support a Role of Antigen Presentation in<br>Hodgkin Lymphoma Development. Cancers, 2021, 13, 414.                                      | 3.7 | 6         |
| 59 | Patterns of Leucocyte Common Antigen Expression in Peripheral Blood T Cell Populations. Cellular<br>Immunology, 1993, 151, 218-224.                                                            | 3.0 | 5         |
| 60 | PML Nuclear Bodies and SATB1 Are Associated with HLA Class I Expression in EBV+ Hodgkin Lymphoma.<br>PLoS ONE, 2013, 8, e72930.                                                                | 2.5 | 5         |
| 61 | Combined loss of <scp>HLA</scp> I and <scp>HLA II</scp> expression is more common in the nonâ€ <scp>GCB</scp> type of diffuse large B cell lymphoma. Histopathology, 2018, 72, 886-888.        | 2.9 | 4         |
| 62 | Mid-Treatment Plasma Levels of Thymus Activated and Regulated Chemokine (TARC) Predict Treatment<br>Outcome In Classical Hodgkin Lymphoma Patients. Blood, 2010, 116, 748-748.                 | 1.4 | 4         |
| 63 | Validation of Novel Molecular Imaging Targets Identified by Functional Genomic mRNA Profiling to<br>Detect Dysplasia in Barrett's Esophagus. Cancers, 2022, 14, 2462.                          | 3.7 | 4         |
| 64 | Combined PD-1 and JAK1/2 inhibition in refractory primary mediastinal B-cell lymphoma. Annals of Hematology, 2018, 97, 905-907.                                                                | 1.8 | 3         |
| 65 | The Nature of the Lymphocytes in Hodgkin's Disease. , 1995, , 161-171.                                                                                                                         |     | 3         |
| 66 | Evidence for a B-cell origin of the proliferating cells. Cancer Treatment and Research, 1989, 41, 5-27.                                                                                        | 0.5 | 3         |
| 67 | Computational study, synthesis and evaluation of active peptides derived from Parasporin-2 and spike protein from Alphacoronavirus against colon cancer cells. Bioscience Reports, 2021, 41, . | 2.4 | 3         |
| 68 | Microenvironment, Cross-Talk, and Immune Escape Mechanisms. , 2011, , 49-61.                                                                                                                   |     | 1         |
| 69 | The HGF/c-Met Signaling Pathway in Hodgkin Lymphoma Blood, 2009, 114, 1551-1551.                                                                                                               | 1.4 | 1         |
| 70 | Protective and Predisposing HLA Alleles In Dutch Classical Hodgkin Lymphoma Patients. Blood, 2010,<br>116, 749-749.                                                                            | 1.4 | 1         |
| 71 | Microenvironment, Cross-Talk, and Immune Escape Mechanisms. Hematologic Malignancies, 2020, ,<br>69-86.                                                                                        | 0.2 | 1         |
| 72 | Genetic Modification Approaches for Parasporins Bacillus thuringiensis Proteins with Anticancer<br>Activity. Molecules, 2021, 26, 7476.                                                        | 3.8 | 1         |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Anti-CD37 radioimmunotherapy with 177Lu-NNV003 synergizes with the PARP inhibitor olaparib in<br>treatment of non-Hodgkin's lymphoma in vitro. PLoS ONE, 2022, 17, e0267543.                                                             | 2.5 | 1         |
| 74 | Microenvironment, Crosstalk, and Immune Escape Mechanisms. Hematologic Malignancies, 2015, , 65-78.                                                                                                                                      | 0.2 | 0         |
| 75 | Targeting the Microenvironment in Hodgkin Lymphoma: Opportunities and Challenges. Molecular<br>Pathology Library, 2018, , 59-90.                                                                                                         | 0.1 | 0         |
| 76 | Plasma cells in classical Hodgkin lymphoma: a new player in the microenvironment?. British Journal of<br>Haematology, 2019, 184, 119-120.                                                                                                | 2.5 | 0         |
| 77 | miRNA Expression Profile of B-SLL Consistent with Normal Memory B Cells:BIC/miR–155 Specific<br>Location in Proliferation Center Blood, 2007, 110, 2081-2081.                                                                            | 1.4 | 0         |
| 78 | Expression of CD1c, CD1d and Presence of Invariant NKT Cells in Hodgkin Lymphoma Blood, 2009, 114, 3659-3659.                                                                                                                            | 1.4 | 0         |
| 79 | Expression of the c-Met Oncogene Correlates with Favorable Progression Free Survival In Classical<br>Hodgkin Lymphoma. Blood, 2010, 116, 3880-3880.                                                                                      | 1.4 | 0         |
| 80 | HLA Class I and EBV Positive Classical Hodgkin Lymphoma In the Chinese Population. Blood, 2010, 116, 2688-2688.                                                                                                                          | 1.4 | 0         |
| 81 | CCR4 Expression in Hodgkin Lymphoma. Blood, 2011, 118, 2626-2626.                                                                                                                                                                        | 1.4 | 0         |
| 82 | EBV and HLA Associations In Classical Hodgkin Lymphoma Patients From Brazil. Blood, 2011, 118, 4858-4858.                                                                                                                                | 1.4 | 0         |
| 83 | Strong HLA Class I Expression Is Positively Correlated with the Number of PML Nuclear Bodies and<br>Negatively with the Percentage of SATB1 Positive HRS Cells in EBV+ Classical Hodgkin Lymphoma (cHL).<br>Blood, 2012, 120, 3633-3633. | 1.4 | 0         |