Ying Dan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10612169/publications.pdf

Version: 2024-02-01

		159585	182427
65	2,688	30	51
papers	citations	h-index	g-index
65	65	65	1001
65	65	65	1881
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Electrorheological fluids: smart soft matter and characteristics. Soft Matter, 2012, 8, 11961.	2.7	223
2	Physical characteristics of magnetorheological suspensions and their applications. Journal of Industrial and Engineering Chemistry, 2013, 19, 394-406.	5.8	166
3	Core–Shell Structured Carbonyl Iron Microspheres Prepared via Dual-Step Functionality Coatings and Their Magnetorheological Response. ACS Applied Materials & Dual-Step Functionality Coatings	8.0	149
4	Graphene oxide coated core–shell structured polystyrene microspheres and their electrorheological characteristics under applied electric field. Journal of Materials Chemistry, 2011, 21, 6916.	6.7	145
5	Coreâ^'Shell Structured Semiconducting PMMA/Polyaniline Snowman-like Anisotropic Microparticles and Their Electrorheology. Langmuir, 2010, 26, 12849-12854.	3 . 5	122
6	Pickering-Emulsion-Polymerized Polystyrene/Fe ₂ O ₃ Composite Particles and Their Magnetoresponsive Characteristics. Langmuir, 2013, 29, 4959-4965.	3. 5	122
7	Electrorheology of Graphene Oxide. ACS Applied Materials & Interfaces, 2012, 4, 2267-2272.	8.0	109
8	Smart monodisperse polystyrene/polyaniline coreâ€"shell structured hybrid microspheres fabricated by a controlled releasing technique and their electro-responsive characteristics. Journal of Materials Chemistry, 2011, 21, 17396.	6.7	96
9	Fabrication of semiconducting graphene oxide/polyaniline composite particles and their electrorheological response under an applied electric field. Carbon, 2012, 50, 290-296.	10.3	87
10	Growth of Polyaniline Nanoneedles on MoS ₂ Nanosheets, Tunable Electroresponse, and Electromagnetic Wave Attenuation Analysis. Journal of Physical Chemistry C, 2017, 121, 4989-4998.	3.1	84
11	Silica nanoparticle decorated polyaniline nanofiber and its electrorheological response. Soft Matter, 2011, 7, 2782.	2.7	82
12	Magnetic field intensity effect on plane electric capacitor characteristics and viscoelasticity of magnetorheological elastomer. Colloid and Polymer Science, 2012, 290, 1115-1122.	2.1	80
13	Core–shell-structured silica-coated magnetic carbonyl iron microbead and its magnetorheology with anti-acidic characteristics. Colloid and Polymer Science, 2011, 289, 1295-1298.	2.1	77
14	Carbonyl iron particles dispersed in a polymer solution and their rheological characteristics under applied magnetic field. Journal of Industrial and Engineering Chemistry, 2012, 18, 664-667.	5.8	53
15	Controllable fabrication of silica encapsulated soft magnetic microspheres with enhanced oxidation-resistance and their rheology under magnetic field. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 403, 133-138.	4.7	52
16	Carbon nanotube coated snowman-like particles and their electro-responsive characteristics. Chemical Communications, 2012, 48, 136-138.	4.1	51
17	Core–shell-structured cross-linked poly(glycidyl methacrylate)-coated carbonyl iron microspheres and their magnetorheology. Journal of Materials Science, 2014, 49, 1345-1352.	3.7	51
18	Enhanced magnetorheology of soft magnetic carbonyl iron suspension with hard magnetic \hat{I}^3 -Fe2O3 nanoparticle additive. Colloid and Polymer Science, 2015, 293, 641-647.	2.1	51

#	Article	IF	CITATIONS
19	Coreâ€Shell Structured Monodisperse Poly(3,4â€Ethylenedioxythiophene)/Poly(Styrenesulfonic Acid) Coated Polystyrene Microspheres and Their Electrorheological Response. Macromolecular Rapid Communications, 2011, 32, 881-886.	3.9	47
20	Silica nanoparticle decorated conducting polyaniline fibers and their electrorheology. Materials Letters, 2010, 64, 154-156.	2.6	42
21	Carbon nanotube coated magnetic carbonyl iron microspheres prepared by solvent casting method and their magneto-responsive characteristics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 412, 47-56.	4.7	42
22	Fabrication of dual-coated graphene oxide nanosheets by polypyrrole and poly(ionic liquid) and their enhanced electrorheological responses. Journal of Industrial and Engineering Chemistry, 2019, 69, 106-115.	5.8	40
23	Coreâ€"Shell-Structured Monodisperse Copolymer/Silica Particle Suspension and Its Electrorheological Response. Langmuir, 2014, 30, 1729-1734.	3.5	39
24	Urchin-like polyaniline microspheres fabricated from self-assembly of polyaniline nanowires and their electro-responsive characteristics. Chemical Engineering Journal, 2014, 235, 186-190.	12.7	33
25	Well controlled core/shell type polymeric microspheres coated with conducting polyaniline: fabrication and electrorheology. RSC Advances, 2011, 1, 1026.	3.6	32
26	Fabrication of semiconducting polyaniline/nano-silica nanocomposite particles and their enhanced electrorheological and dielectric characteristics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 381, 17-22.	4.7	32
27	Pickering emulsion polymerization of core–shell-structured polyaniline@SiO2 nanoparticles and their electrorheological response. Colloid and Polymer Science, 2012, 290, 855-860.	2.1	32
28	Electrorheological and magnetorheological response of polypyrrole/magnetite nanocomposite particles. Colloid and Polymer Science, 2013, 291, 1781-1786.	2.1	32
29	Core–shell structured graphene oxide-adsorbed anisotropic poly(methyl methacrylate) microparticles and their electrorheology. RSC Advances, 2013, 3, 11723.	3.6	32
30	Fabrication of imidazolium-based poly(ionic liquid) microspheres and their electrorheological responses. Journal of Materials Science, 2017, 52, 5778-5787.	3.7	32
31	Carbonyl iron suspension with halloysite additive and its magnetorheology. Applied Clay Science, 2013, 80-81, 366-371.	5.2	30
32	Optically transparent electrorheological fluid with urea-modified silica nanoparticles and its haptic display application. Journal of Colloid and Interface Science, 2013, 404, 56-61.	9.4	30
33	Magnetorheology of core–shell typed dual-coated carbonyl iron particle fabricated by a sol–gel and self-assembly process. Materials Research Bulletin, 2015, 69, 92-97.	5.2	29
34	Fabrication of Carbonyl Iron Embedded Polycarbonate Composite Particles and Magnetorheological Characterization. IEEE Transactions on Magnetics, 2009, 45, 2507-2510.	2.1	27
35	Polymeric colloidal magnetic composite microspheres and their magneto-responsive characteristics. Macromolecular Research, 2012, 20, 1211-1218.	2.4	24
36	Recent progress in smart polymer composite particles in electric and magnetic fields. Polymer International, 2013, 62, 147-151.	3.1	24

#	Article	IF	CITATIONS
37	Brake performance of core–shell structured carbonyl iron/silica based magnetorheological suspension. Journal of Magnetism and Magnetic Materials, 2014, 367, 69-74.	2.3	24
38	Monodisperse poly(2-methylaniline) coated polystyrene core–shell microspheres fabricated by controlled releasing process and their electrorheological stimuli-response under electric fields. Journal of Colloid and Interface Science, 2015, 440, 9-15.	9.4	23
39	Novel electrorheological properties of a metal–organic framework Cu3(BTC)2. Chemical Communications, 2012, 48, 5635.	4.1	19
40	Conducting Material-incorporated Electrorheological Fluids: Core-shell Structured Spheres. Australian Journal of Chemistry, 2012, 65, 1195.	0.9	18
41	Fabrication of ammonium persulfate coated silica microsphere via chemical grafting and its electrorheology. Journal of Materials Science, 2014, 49, 2618-2623.	3.7	17
42	Highly transparent electrorheological fluids of silica nanoparticles: the effect of urea modification. Journal of Materials Chemistry C, 2016, 4, 7875-7882.	5.5	16
43	Generalized yield stress equation for electrorheological fluids. Journal of Colloid and Interface Science, 2013, 409, 259-263.	9.4	14
44	Enhanced effect of dopant on polyaniline nanofiber based electrorheological response. Materials Chemistry and Physics, 2014, 147, 843-849.	4.0	14
45	Synthesis and characteristics of snowman-like fluorescent PMMA microbeads. Colloid and Polymer Science, 2012, 290, 1703-1706.	2.1	11
46	Graphene oxide nanocomposites and their electrorheology. Materials Research Bulletin, 2013, 48, 4997-5002.	5.2	11
47	Yield stress analysis of 1D calcium and titanium precipitate-based giant electrorheological fluids. Colloid and Polymer Science, 2013, 291, 1267-1270.	2.1	11
48	The Electric Field Responses of Inorganic Ionogels and Poly(ionic liquid)s. Molecules, 2020, 25, 4547.	3.8	11
49	Preparation of Cellulose/Laponite Composite Particles and Their Enhanced Electrorheological Responses. Molecules, 2021, 26, 1482.	3.8	11
50	Ionic-liquid-modified TiO2 spheres and their enhanced electrorheological responses. Journal of Molecular Liquids, 2021, 338, 116696.	4.9	11
51	Transparent thiourea treated silica suspension through refractive index matching method and its electrorheology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 397, 80-84.	4.7	10
52	Iron oxide/MCM-41 mesoporous nanocomposites and their magnetorheology. Colloid and Polymer Science, 2013, 291, 1895-1901.	2.1	8
53	Nanoporous Fe-MCM-22 Additive Effect on Magnetorheological Response of Magnetic Carbonyl Iron Suspension. IEEE Transactions on Magnetics, 2013, 49, 3410-3413.	2.1	8
54	Field-responsive smart composite particle suspension: materials and rheology. Korea Australia Rheology Journal, 2012, 24, 147-153.	1.7	7

#	Article	IF	CITATIONS
55	Fabrication of anisotropic snowman-like magnetic particles and their magnetorheological response. Journal of Applied Physics, 2014, 115, 178529.	2.5	7
56	Comment on "Synthesis and electrorheological characteristics of titanate nanotube suspensions under oscillatory shear― Journal of Industrial and Engineering Chemistry, 2010, 16, 651-653.	5.8	6
57	Surfactant effect on functionalized carbon nanotube coated snowman-like particles and their electro-responsive characteristics. Materials Research Bulletin, 2012, 47, 2752-2755.	5.2	6
58	Magnetorheology of iron associated magnetic metal-organic framework nanoparticle. Journal of Applied Physics, 2015, 117, 17C732.	2.5	6
59	Enhanced Electrorheological Response of Cellulose: A Double Effect of Modification by Urea-Terminated Silane. Polymers, 2018, 10, 867.	4.5	6
60	Titanium Dioxide Nanoparticles Modified with Disulfonic Acid Functionalized Imidazolium Ionic Liquids for Use as Electrorheological Materials. ACS Applied Nano Materials, 2021, 4, 12382-12392.	5.0	5
61	Submicron Magnetic Particles of ${m Mn}_{0.25}$ m Fe $_{2.75}$ m O $_{4}$ and Their Magnetorheological Characteristics. IEEE Transactions on Magnetics, 2013, 49, 3406-3409.	2.1	3
62	Magnetorheological response of soft-magnetic carbonyl iron microbeads dispersed in a poly(ethylene) Tj ETQq0	0 0 rgBT /	Ovgrlock 10 T
63	Direct evidence of entropy driven fluid-like – glass-like transition in microgel suspensions. Applied Physics Letters, 2017, 110, 071902.	3.3	2
64	Electrorheological Responses of Acid-Hydrolyzed Cellulose Suspensions. Current Smart Materials, 2018, 3, 58-67.	0.5	1
65	Silica-based ionogels containing imidazolium ionic liquids and their electrorheological responses at room and elevated temperatures. Materials Today Communications, 2021, 28, 102532.	1.9	1