Cláudia Nunes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1061171/publications.pdf

Version: 2024-02-01

99 papers 2,913 citations

30 h-index 197736 49 g-index

100 all docs

100 docs citations

100 times ranked

4048 citing authors

#	Article	IF	Citations
1	Cinnamomum burmannii decoction: A thickening and flavouring ingredient. LWT - Food Science and Technology, 2022, 153, 112428.	2.5	5
2	Self-glucose feeding hydrogels by enzyme empowered degradation for 3D cell culture. Materials Horizons, 2022, 9, 694-707.	6.4	10
3	Impacts of low concentrations of nanoplastics on leaf litter decomposition and food quality for detritivores in streams. Journal of Hazardous Materials, 2022, 429, 128320.	6.5	22
4	Green Carbon Nanostructures for Functional Composite Materials. International Journal of Molecular Sciences, 2022, 23, 1848.	1.8	11
5	Design of heat sealable starch-chitosan bioplastics reinforced with reduced graphene oxide for active food packaging. Carbohydrate Polymers, 2022, 291, 119517.	5.1	27
6	Relevance of genipin networking on rheological, physical, and mechanical properties of starch-based formulations. Carbohydrate Polymers, 2021, 254, 117236.	5.1	12
7	Flexible Piezoelectric Chitosan and Barium Titanate Biocomposite Films for Sensor Applications. European Journal of Inorganic Chemistry, 2021, 2021, 792-803.	1.0	18
8	Concentrate Apple Juice Industry: Aroma and Pomace Valuation as Food Ingredients. Applied Sciences (Switzerland), 2021, 11, 2443.	1.3	5
9	Joining Caffeic Acid and Hydrothermal Treatment to Produce Environmentally Benign Highly Reduced Graphene Oxide. Nanomaterials, 2021, 11, 732.	1.9	5
10	Assessment of seasonal and spatial variations in the nutritional content of six edible marine bivalve species by the response of a set of integrated biomarkers. Ecological Indicators, 2021, 124, 107378.	2.6	2
11	Potato peel phenolics as additives for developing active starch-based films with potential to pack smoked fish fillets. Food Packaging and Shelf Life, 2021, 28, 100644.	3.3	36
12	Polysaccharide Structures and Their Hypocholesterolemic Potential. Molecules, 2021, 26, 4559.	1.7	32
13	Impact of Chitosan-Genipin Films on Volatile Profile of Wine along Storage. Applied Sciences (Switzerland), 2021, 11, 6294.	1.3	6
14	In vitro immunomodulatory activity of water-soluble glucans from fresh and dried Longan (Dimocarpus longan Lour.). Carbohydrate Polymers, 2021, 266, 118106.	5.1	14
15	Unravelling the Role of Synthesis Conditions on the Structure of Zinc Oxide-Reduced Graphene Oxide Nanofillers. Nanomaterials, 2021, 11, 2149.	1.9	11
16	HS-SPME Gas Chromatography Approach for Underivatized Acrylamide Determination in Biscuits. Foods, 2021, 10, 2183.	1.9	7
17	Characterization of levan produced by a Paenibacillus sp. isolated from Brazilian crude oil. International Journal of Biological Macromolecules, 2021, 186, 788-799.	3.6	16
18	Design of Alginate-Based Bionanocomposites with Electrical Conductivity for Active Food Packaging. International Journal of Molecular Sciences, 2021, 22, 9943.	1.8	18

#	Article	IF	CITATIONS
19	Influence of ohmic heating in the composition of extracts from Gracilaria vermiculophylla. Algal Research, 2021, 58, 102360.	2.4	19
20	Impact of growth medium salinity on galactoxylan exopolysaccharides of Porphyridium purpureum. Algal Research, 2021, 59, 102439.	2.4	12
21	New properties of chia seed mucilage (Salvia hispanica L.) and potential application in cosmetic and pharmaceutical products. Industrial Crops and Products, 2021, 171, 113981.	2.5	21
22	Enhancing the dispersibility of multiwalled carbon nanotubes within starch-based films by the use of ionic surfactants. Carbohydrate Polymers, 2021, 273, 118531.	5.1	11
23	Coating of Magnetite Nanoparticles with Fucoidan to Enhance Magnetic Hyperthermia Efficiency. Nanomaterials, 2021, 11, 2939.	1.9	11
24	Mapping Molecular Recognition of \hat{l}^2 1,3-1,4-Glucans by a Surface Glycan-Binding Protein from the Human Gut Symbiont Bacteroides ovatus. Microbiology Spectrum, 2021, 9, e0182621.	1.2	3
25	Cyanoflan: A cyanobacterial sulfated carbohydrate polymer with emulsifying properties. Carbohydrate Polymers, 2020, 229, 115525.	5.1	36
26	Biocompatible chitosan-based composites with properties suitable for hyperthermia therapy. Journal of Materials Chemistry B, 2020, 8, 1256-1265.	2.9	35
27	Reserve, structural and extracellular polysaccharides of Chlorella vulgaris: A holistic approach. Algal Research, 2020, 45, 101757.	2.4	30
28	The Polar Lipidome of Cultured Emiliania huxleyi: A Source of Bioactive Lipids with Relevance for Biotechnological Applications. Biomolecules, 2020, 10, 1434.	1.8	14
29	Coffee silverskin and starch-rich potato washing slurries as raw materials for elastic, antioxidant, and UV-protective biobased films. Food Research International, 2020, 138, 109733.	2.9	18
30	Graphene Derivatives in Biopolymer-Based Composites for Food Packaging Applications. Nanomaterials, 2020, 10, 2077.	1.9	31
31	Tailoring the surface properties and flexibility of starch-based films using oil and waxes recovered from potato chips byproducts. International Journal of Biological Macromolecules, 2020, 163, 251-259.	3.6	26
32	Mechanism of iron ions sorption by chitosan-genipin films in acidic media. Carbohydrate Polymers, 2020, 236, 116026.	5.1	12
33	Cell Wall Composition and Ultrastructural Immunolocalization of Pectin and Arabinogalactan Protein during Olea europaea L. Fruit Abscission. Plant and Cell Physiology, 2020, 61, 814-825.	1.5	13
34	lonic Liquid-Mediated Recovery of Carotenoids from the <i>Bactris gasipaes</i> Fruit Waste and Their Application in Food-Packaging Chitosan Films. ACS Sustainable Chemistry and Engineering, 2020, 8, 4085-4095.	3.2	43
35	Feasibility of chitosan crosslinked with genipin as biocoating for cellulose-based materials. Carbohydrate Polymers, 2020, 242, 116429.	5.1	18
36	Comparison of high pressure treatment with conventional red wine aging processes: impact on phenolic composition. Food Research International, 2019, 116, 223-231.	2.9	16

#	Article	IF	CITATIONS
37	Nutritional Potential and Toxicological Evaluation of Tetraselmis sp. CTP4 Microalgal Biomass Produced in Industrial Photobioreactors. Molecules, 2019, 24, 3192.	1.7	57
38	Eco-friendly preparation of electrically conductive chitosan - reduced graphene oxide flexible bionanocomposites for food packaging and biological applications. Composites Science and Technology, 2019, 173, 53-60.	3.8	90
39	Structure, rheology, and copper-complexation of a hyaluronan-like exopolysaccharide from Vibrio. Carbohydrate Polymers, 2019, 222, 114999.	5.1	20
40	Structural analysis and potential immunostimulatory activity of Nannochloropsis oculata polysaccharides. Carbohydrate Polymers, 2019, 222, 114962.	5.1	51
41	Biochemical impacts in adult and juvenile farmed European seabass and gilthead seabream from semi-intensive aquaculture of southern European estuarine systems. Environmental Science and Pollution Research, 2019, 26, 13422-13440.	2.7	2
42	Salt pan brine water as a sustainable source of sulphated polysaccharides with immunostimulatory activity. International Journal of Biological Macromolecules, 2019, 133, 235-242.	3.6	5
43	Impacts of S-metolachlor and terbuthylazine in fatty acid and carbohydrate composition of the benthic clam Scrobicularia plana. Ecotoxicology and Environmental Safety, 2019, 173, 293-304.	2.9	12
44	Pyrolyzed chitosan-based materials for CO2/CH4 separation. Chemical Engineering Journal, 2019, 362, 364-374.	6.6	26
45	The Potential of Fucose-Containing Sulfated Polysaccharides As Scaffolds for Biomedical Applications. Current Medicinal Chemistry, 2019, 26, 6399-6411.	1.2	15
46	Tailoring Functional Chitosanâ€Based Composites for Food Applications. Chemical Record, 2018, 18, 1138-1149.	2.9	27
47	Fractionation of <i>Isochrysis galbana</i> Proteins, Arabinans, and Glucans Using Ionic-Liquid-Based Aqueous Biphasic Systems. ACS Sustainable Chemistry and Engineering, 2018, 6, 14042-14053.	3.2	26
48	Adding value to ragworms (Hediste diversicolor) through the bioremediation of a super-intensive marine fish farm. Aquaculture Environment Interactions, 2018, 10, 79-88.	0.7	30
49	The Key Role of Sulfation and Branching on Fucoidan Antitumor Activity. Macromolecular Bioscience, 2017, 17, 1600340.	2.1	76
50	CotA laccase-ABTS/hydrogen peroxide system: An efficient approach to produce active and decolorized chitosan-genipin films. Carbohydrate Polymers, 2017, 175, 628-635.	5.1	13
51	Effect of spatio-temporal shifts in salinity combined with other environmental variables on the ecological processes provided by Zostera noltei meadows. Scientific Reports, 2017, 7, 1336.	1.6	15
52	Applications of chitosan and their derivatives in beverages: a critical review. Current Opinion in Food Science, 2017, 15, 61-69.	4.1	94
53	Evaluation of phenolic compounds composition, antioxidant activity and bioavailability of phenols in dried thistle flower. Journal of Food Measurement and Characterization, 2017, 11, 192-203.	1.6	3
54	Conditions for producing long shelf life fruit salads processed using mild pasteurization. LWT - Food Science and Technology, 2017, 85, 316-323.	2.5	11

#	Article	IF	CITATIONS
55	By-products of Scyliorhinus canicula, Prionace glauca and Raja clavata: A valuable source of predominantly 6S sulfated chondroitin sulfate. Carbohydrate Polymers, 2017, 157, 31-37.	5.1	40
56	Influence of High Hydrostatic Pressure Technology on Wine Chemical and Sensorial Characteristics. Advances in Food and Nutrition Research, 2017, 82, 205-235.	1.5	13
57	Chitosan–genipin film, a sustainable methodology for wine preservation. Green Chemistry, 2016, 18, 5331-5341.	4.6	56
58	Safety of chitosan processed wine in shrimp allergic patients. Annals of Allergy, Asthma and Immunology, 2016, 116, 462-463.	0.5	15
59	Evaluation of the potential of high pressure technology as an enological practice for red wines. Innovative Food Science and Emerging Technologies, 2016, 33, 76-83.	2.7	30
60	Simple and effective chitosan based films for the removal of Hg from waters: Equilibrium, kinetic and ionic competition. Chemical Engineering Journal, 2016, 300, 217-229.	6.6	61
61	Clayâ€Graphene Nanoplatelets Functional Conducting Composites. Advanced Functional Materials, 2016, 26, 7394-7405.	7.8	70
62	Conducting Composites: Clay-Graphene Nanoplatelets Functional Conducting Composites (Adv. Funct.) Tj ETQ	q0 9 ,8 rgB	T /Overlock 10
63	First report of Cytauxzoon sp. infection in a domestic cat from Portugal. Parasites and Vectors, 2016, 9, 220.	1.0	31
64	Surface Morphology of Chitosan Films with Incorporation of Grape Pomace. Microscopy and Microanalysis, 2015, 21, 35-36.	0.2	2
65	Signalling pathways involved in oocyte growth, acquisition of competence and activation. Human Fertility, 2015, 18, 149-155.	0.7	20
66	High pressure treatments accelerate changes in volatile composition of sulphur dioxide-free wine during bottle storage. Food Chemistry, 2015, 188, 406-414.	4.2	48
67	Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. Carbohydrate Polymers, 2015, 115, 1-9.	5.1	159
68	Antioxidant activity of <i><scp>P</scp>inus pinaster</i> infected with <i><scp>F</scp>usarium circinatum</i> is influenced by maternal effects. Forest Pathology, 2014, 44, 337-340.	0.5	11
69	Maternal effects and carbohydrate changes of Pinus pinaster after inoculation with FusariumÂcircinatum. Trees - Structure and Function, 2014, 28, 373-379.	0.9	24
70	Molecular insights into mitochondrial dysfunction in cancer-related muscle wasting. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 896-905.	1.2	59
71	Influence of grape pomace extract incorporation on chitosan films properties. Carbohydrate Polymers, 2014, 113, 490-499.	5.1	162
72	Structural analysis of dextrins and characterization of dextrin-based biomedical hydrogels. Carbohydrate Polymers, 2014, 114, 458-466.	5.1	33

#	Article	IF	CITATIONS
73	Composition of pectic polysaccharides in a Portuguese apple (Malus domestica Borkh. cv Bravo de) Tj ETQq1 1 ().784314 0.6	rgBT/Overloc
74	Determination of Aldoses, Deoxy-aldoses and Uronic Acids Content in a Pectin-Rich Extract by RP-HPLC-FLD after p-AMBA Derivatization. Chromatographia, 2013, 76, 1117-1124.	0.7	5
75	Chitosan–caffeic acid–genipin films presenting enhanced antioxidant activity and stability in acidic media. Carbohydrate Polymers, 2013, 91, 236-243.	5.1	103
76	Impact of high pressure treatments on the physicochemical properties of a sulphur dioxide-free white wine during bottle storage: Evidence for Maillard reaction acceleration. Innovative Food Science and Emerging Technologies, 2013, 20, 51-58.	2.7	37
77	Carboxymethylation of ulvan and chitosan and their use as polymeric components of bone cements. Acta Biomaterialia, 2013, 9, 9086-9097.	4.1	57
78	Remodeling of liver phospholipidomic profile in streptozotocin-induced diabetic rats. Archives of Biochemistry and Biophysics, 2013, 538, 95-102.	1.4	13
79	Effect of high pressure treatments on the physicochemical properties of a sulphur dioxide-free red wine. Food Chemistry, 2013, 141, 2558-2566.	4.2	59
80	Occurrence of cellobiose residues directly linked to galacturonic acid in pectic polysaccharides. Carbohydrate Polymers, 2012, 87, 620-626.	5.1	50
81	Chemical and physical methodologies for the replacement/reduction of sulfur dioxide use during winemaking: review of their potentialities and limitations. European Food Research and Technology, 2012, 234, 1-12.	1.6	137
82	Palmitoylation of xanthan polysaccharide for self-assembly microcapsule formation and encapsulation of cells in physiological conditions. Soft Matter, 2011, 7, 9647.	1.2	26
83	Amino acid profile and Maillard compounds of sun-dried pears. Relation with the reddish brown colour of the dried fruits. European Food Research and Technology, 2011, 233, 637-646.	1.6	29
84	Naturally fermented black olives: Effect on cell wall polysaccharides and on enzyme activities of Taggiasca and Conservolea varieties. LWT - Food Science and Technology, 2010, 43, 153-160.	2.5	18
85	Traditional and industrial oven-dry processing of olive fruits: influence on textural properties, cell wall polysaccharide composition, and enzymatic activity. European Food Research and Technology, 2009, 229, 415-425.	1.6	12
86	Search for suitable maturation parameters to define the harvest maturity of plums (Prunus domestica) Tj ETQq0	0 Q.rgBT /	/Overlock 10 1
87	Effects of ripening on microstructure and texture of "Ameixa d'Elvas―candied plums. Food Chemistry, 2009, 115, 1094-1101.	4.2	20
88	Effect of candying on cell wall polysaccharides of plums (Prunus domestica L.) and influence of cell wall enzymes. Food Chemistry, 2008, 111, 538-548.	4.2	39
89	Study of the volatile components of a candied plum and estimation of their contribution to the aroma. Food Chemistry, 2008, 111, 897-905.	4.2	52
90	Effect of candying on microstructure and texture of plums (Prunus domestica L.). LWT - Food Science and Technology, 2008, 41, 1776-1783.	2.5	17

#	Article	IF	CITATIONS
91	Characterization of Plum Procyanidins by Thiolytic Depolymerization. Journal of Agricultural and Food Chemistry, 2008, 56, 5188-5196.	2.4	32
92	Purification and characterization of olive (Olea europaea L.) peroxidase – Evidence for the occurrence of a pectin binding peroxidase. Food Chemistry, 2007, 101, 1571-1579.	4.2	47
93	THERMAL AND HIGH-PRESSURE STABILITY OF PURIFIED PECTIN METHYLESTERASE FROM PLUMS (PRUNUS) Tj ET	TQq1 1 0.	784314 rgBT
94	Simple and solvent-free methodology for simultaneous quantification of methanol and acetic acid content of plant polysaccharides based on headspace solid phase microextraction-gas chromatography (HS-SPME-GC-FID). Carbohydrate Polymers, 2006, 64, 306-311.	5.1	29
95	Ripening-related changes in the cell walls of olive (Olea europaea L.) pulp of two consecutive harvests. Journal of the Science of Food and Agriculture, 2006, 86, 988-998.	1.7	22
96	Effect of High Pressure Treatments on protease and \hat{I}^2 -Galactosidase Activities of Table Olives. High Pressure Research, 2002, 22, 669-672.	0.4	1
97	Development of Magnetic Chitosan Scaffolds with Potential for Bone Regeneration and Cancer Therapy. , 0, , .		1
98	Sustainable Synthesis of Carbon–Clay Nanocomposites. , 0, , .		1
99	Characterization of Electromechanical Performance of Chitosan Films. , 0, , .		0